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ABSTRACT 

Hie present paper gives device representations, via multitape AFA, 

for the fRmilies of languages which result from applying the A and the sub- 

stitution operations to AFL.    In particular,   if JD1 and fi    are multitape AFA 

{i.e.t  certain families of multi-storage tape acceptors),  then iQ.A JO    is 

defined as the family of multitape acceptors which results when the tapes of 

fl- and flp are coalesced, with the -fL- tapes preceding those in fl  .    It is 

shown that the smallest full AFL containing X(JÖ  )A £(< ) = [hJ] Ljh.  in -.(i^) 

is X(jfl A /)  ).    For each multitape AFA 6,  a set JO    of "nested" multitape 

acceptors is defined.    It is shown that if JSL  and fi    are single-tape AFA,  then 

the family of languages obtained from (fl^ JO  )    is the family of languages 

obtained by substituting the AFL defined by fl    into the AFL defined by fl.. 
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MULTITAPE AFA* 

INTOODUCTION 

In [5] and [18], the notion of a family of one-way nondeterministic 

devices vas abstracted and studied extensively. A natural extension of a 

device with a particular type of storage tape is a multitape (storage) device, 

each tape of the same kind. For excmple, a pushdown acceptor can be extended 

to a device with two pushdown tapes. In most familiar cases—counter, pushdown, 

stack—adding a second storage tape increases the power of the device to that of 

a Turing acceptor. By suitable restrictions on multitape devices, families can 

be obtained so that the associated languages, as, for example, the one-way 

nondeterministic list-storage languages [8], do not include all recursively- 

enumerable sets. The  purpose of this paper is to abstract the notion of an 

''abstract family of multitape acceptors" (abbreviated "multitape AFA"), each 

storage tape not necessarily of the same kind, and examine the family of 

associated languages. 

Our interest in multitape AFA originally arose from studying various 

operations upon families of languages. We were interested in the operations of 

A and substitution among families of languages, these operations appearing, 

sometimes in disguised form, in a number of papers [7, 8, 11, 12, 13, 15, 16, 

20, 21]. (If i, and Z    are families of languages, then X A X = 

Research sponsored in part by the Air Fcrce Cambridge Research Laboratories, 
Office of Aerospace Research, USAF, under contract FI962867COOO8, and by the 
Air Force Office of Scientific Research, Office of Aerospace Research, USAF, 
under AFOSR Grant No. AF-AF0SR-12O3-67A. 
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{Lj^ 0 Ljetich  L in X^^).) Now certain families of languages are 

representable by single-tape AFA (see [?])• For these families, ve were 

Interested in device representations for the families obtained by the A and 

substitution operations. The main results of this document show that multitape 

AFA provide such representations. 

Ohe paper itself is divided into four sections and an appendix. Section 1 

introduces the notion of a multitape AFA. It is shown (Lemma 1.1) that for 

each multitape AFA there exists a single-tape AFA, equivalent frcm the point 

of view of sets accepted. 

Section 2 introduces the operation of A between multitape AFA and 

discusses the operation of A between AFL. (AFL [5 ] are families of sets of 

words with certain properties and are an abstraction of many of the formal 

languages discussed in computer science.) Roughly speaking, if £. and 6    are 

multitape AFA, then O.A Ä is the multitape AFA resulting when the tapes of 

* and fi are coalesced, with the fi -tapes preceding those in £ . The 

operation A between multitape AFA is then used to provide a multitape AFA 

characterization of the smallest AFL containing X A ... AX , each X an AFL, 

in terms of an AFA defining the X (Theorem 2.1). A characterization of an 

AFL being closed under intersection is given in terms of the existence of a 

certain kind of multitape AFA (Theorem 2.3)» 

Section 3 is concerned with multitape transducers, i.e., devices obtained 

by adding an output tape to a multitape acceptor. Connections between multi- 

tape transducers, composition of single-tape transducers, and A are then 

found. 
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Section h  deals with "nested" multitape A^A. These are collections of 

multitape acceptors, each acceptor changing at most one storage tape at a 

tine, and all tapes to the right of the changed one empty. The main result 

(Theorem k.2)  here Is that If ^ and flg are single-tape AFA then the AFL 

given by the nested acceptors of fi.A Ä Is the family obtained by substituting 

the AFL defined by fl Into the AFL defined by fl.. In demonstrating this 

result, a technical lemma (Lncna U,3) Is used vhose proof Is so extensive that 

It Is relegated to an appendix. 

Numerous applications of the theory are given throughout to AFL and AFA 

of Interest In computer science. For example. It Is shovn In Section 2 that 

a language (L) can be recognized In quasi-realtime hy a multitape Turing acceptor 

If and only If L can be recognized In quasl-realtlne by a multl-pushdovn tape 

acceptor if and only If L Is the e-free homomorphlc Image of the finite inter- 

section of context-free languaGes. The applications given show that multitape 

AFA provide greater Insight Into families of languages of concern to automata 

and formal language theorists. 

Section 1. Preliminaries 

As mentioned in the introduction, our aim in this paper is to study 

multitape (storage) devices, each tape not necessarily of the same kind. In 

addition, we shall examine the families of languages associated with these 

' 
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devices. In this section we formalize the kind of multitape device with which 

we are concerned, and present some examples. 

In [LJ] we formulated the notion of an AFA (abstract family of acceptors) 

and established a basic connection between it and certain families of languages. 

We shall define the multitape acceptors of interest to us by modifying the 

notion of an AFA. In particular, we introduce the notion of an "AFA-schema," 

a construct which represents a type of auxiliary storage tape. We then define 

a multitape AFA as a family of devices, each of which has only a finite number 

of preasslgned AFA-schema. 

Definition. An AFA-schema is a 4 tuple (r,I,f;g), with the following 

properties: 

(a 

(b 

(c 

g(0 - 

(a 

(• 

property 

f and I are abstract sets, with F and I nonempty. 

f is a function from'1' T* x 1 into r*U{^). 

g is a function from f    into the finite subsets of T    such that 

e),  and € is in g(Y) if and only if y = £• 

* (2) 
For each v i*1 ß(F  )      ,  there is an element 1   in I satisfying 

= Y    for all Y    such that ßCv') contains Y« 

For each u in I,  there exists a finite set FC F with the following 

If T-jC T, Y is In T*, and f(Y,u) J4,  then f(Y,u) is in (F-U F )*j 

that is,  for each Y in f ,  each symbol occurring in f(Y*u) either occurs in Y 

or is in F . 

_       ^ 
v 'For each abstract set E, E is the set of all finite strings of symbols from 

E, including the empty string e. Each element of E is called a word in E. 

(2) For each set A, g(A) =   U g(Y)« 
Y in A 
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Intuitively, an AFA-schema is a type of auxiliary storage. T is the set 

of "auxiliary" symbols (i.e., the set of symbols going into the auxiliary 

storage). I is the set of "instructions," g is the "storage" information 

function vhich interprets the auxiliary storage configuration, and f is the 

"storage transformation" function which produces a new auxiliary storage 

configuration. The reader ic referred to [5] for further details. 

Definition. A multitape AFA is an ordered pair (0,5), or &  when A is under- 

stood, with the following properties: 

(1) 0 is a 5-tuple (K,E,a,<,n), where 

(a) 0 is a nonempty index set and < is a simple order on (1KJJ. 

(b) n is a function on 3 such that for each a in 2, y,(a) = 
(M 

xa= ^a,Ia,fa,scP is an ^k-schvaa}. 

(c) K and E are infinite abstract sets. 

(2) * is the family of all 6-tuples D = (^,£.,6,0 ,F,u), called imlti- 

tape acceptors, where 

(a) v  = (QL, ..., a. ), k finite, a. in CL  for each i, and a < a1+1 for 

1 s 1 < k. 

(b) K. and Z.. are finite subsets of K and Z, resp., F is a subset of 

K1, and a is in K.. 

m  VJ "That is,  < is transitive,  antireflexive,  and dichotoraous. 

^■'Thus the component \i could be replaced in Q by the more cumbersome 
symbolism ixj a ^ Q« 
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(c) 6 is a function from IC X (ILUU)) X (r_ X ... X T ) into the 

finite subsets of K, x (TX ... x I ) such that 1     ai V 
GD m^l>   "'»  Yk)/6(q,a,(ri, ..., Yk))^ for son:e q and a) 

is finite. 

As in an AFA, K is the set of all possible "states" and Z is the set of 

all possible inputs. Cl is an index set and p, assigns a type of auxiliary 

storage to each a in 0. Each multitape acceptor has a finite number of tapes, 

with p, and u indicating their types. The order in vhich a device displays its 

tapes does not really affect its action. The role of < is Just to impose sane 

order. 

In general, for each a in (2 and each y  in &y(r„), there may be more than 

one element u   (possibly an infinite number) in I satisfying fvCv'»1^ ) = Y 

for all Y' such that fLSy')  contains y.    Now we shall frequently be defining ac- 

ceptors with special propertieB. since acceptors are finitely described, we shall 

need a specific such u   for each a and each y.    Hence we have the following. 

Notation. For each Ct in 0 and each y  in 6^(1" ), l(a,Y) denotes a specific 

element in IL satisfying ^(Y'* 1(0£>Y)) ■ Y' f"01" a11 Y' such that ^JY') con- 

tains Y« In case y = e,  l(ct, c) is abbreviated 1 , 

The movement of a multitape acceptor is now described, in analogy with 

that of an acceptor In an AFA. 

Definition. Let D = (iCyZL^a ,F,u), u = (a., ..., a ), be a multitape 

acceptor. A configuration C is a (k+2)-tuple C = (q,w, (Y-,/ ••., Yv))> ^ha*6 

q is in K,, w is in ZL, and each y.  is in T    . 
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Notation. Let |— be the relation on configurations defined as follows: 

For a In Z^Ute) and w In E^ (q^aw,^, ..., Yk))h-(<l'» W*(Y^ •••» Y^)) if 

there exist Yp •••» Yk> each y« in ^ (Y^^)* such that (q'^t^, ..., u^)) Is 

In 6(qJa, (Y^ ..., Yk)) and. f (Y1>H.)= Y{ for each 1. For each 1^0 let f— 

be the relation on configurations defined by Induction as follows: C I—C for 

each C and C l-^1 c' If there exists C" such that C f^ C" and c" |— c'. Let 

I— be the transitive, reflexive extension of |—, i.e., C j—c' if C (—c' 

for some n^O. 

1    11      1* As usual, the above relations are written hr-, H^ , and frr If D Is to be 

emphasized. 

For each multitape AFA £ and each u = (a., ..., a,),  k2l, we shall be 

Interested In those multitape acceptors with auxiliary storage tapes u. 

Hence we have 

Notation. For each multitape AFA fl and each u, let fl be the family of all 

D = (KyZyfi^F,») in«. 

We now Introduce the families of sets of words defined by the previous 

fan Hies of acceptors. 

Notation. For each D = (K1,E1,5,q.F,u) in 4, let 
M 

L(D) = (w/(qo,w,(e,   ...,  e))  [^-(q^e^e,   ...,  e)) for sane q in F). 

Let X(fi) = (L(D)/D in fi) and for each u, X(«  ) = {L(D)/D in « ). 

As in the acceptors discussed In [5j,   so we frequently shall be interested 

in those multitape acceptors with a bounded number of consecutive e-moves. 

Definition.    D in fi  is quasi-realtirae if there exists an integer in*0 such that 

for all configurations C = (q^e^Yi*   •'•;  Yk)) and c'  = (q^e, (YI*   •••* Yv))» 
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C  |-£-  c'  implies nsm.    Let 

Xt(fl   ) = {L(D)/D in fl    is qua si-realtime) 

and     Xt(fl) = (L(D)/D in fi is quasi-realtlme). 

If ^ = (0^»   •••, 0^),   u2 -(ß^   ..., ß^),  A = {0^,   ..., 0^),  B ■ 

{3,, ..., ßj and A SB, then Ä  can be "embedded" in D  in the following 

sense: Each element D of fl  may be identified with the multitape acceptor 

D'Cin fl )wh:lch consists of (i) the tapes of D, and (ii) the tapes in B-A, 
u2 

with € on them, acting under the identity instruction. (D behaves "essenti- 

ally" the same as D, is quasi-realtlme if and only if D is, and is such that 

L(D') = L(D).) Thus X(« ) C X(fl  ) and X^fl ) C £*(« ). 
ul     32 1       2 

Ihe most -'jnportant multitape AFA are those having Just one tape. 

Definition      If fl = [a],  then (n,fl) is said to be a single-cape AFA. 

We may identify each single-tape AFA with an AFA as defined in [5].    In 

particular,   if (n,fl) is a single-tape AFA,  then we may regard Q as 

(K,E,r ,I .f .g^) and fl as the set of all D of the form (^,11,6,? ,F). 

If (n,fl)  is a finite-tape AFA,   i.e., Q = (a.,   ..., a J  for some finite 

k,  with a. < oi.+1 for each i,   then as noted above, fl may be identified wi th 

We first show that multitape AFA are equivalent (from the point of view 

of sets accepted) to single-tape AFA.    Thus,  as families of recognition 

devices,  multitape AFA are no more powerful than single-tape AFA.  However,  as 

we shall see,  multitape acceptors are useful in representing,   in a "natural" 

way,  the languages obtained from families of languages by certain operations. 

Lemma 1.1.if (0,fl)  is a multitape AFA,   then there exists a single-tape AFA 
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(n,ff) such that £(ff)- X(fi) and Xt(i5")= £*(«). 

Proof.    Let 0 = (K,E,CI,<,|i) and let s be a new symbol not in       U     F .    For each 
O In n   a 

u = (QL,   ..., a ) and each (v^,   ..., u^) in 1L X ... X !„,  let rrCu) and ) 

aC^Ctt-,   ..., tu )) be nev sjiabols.    LetN   U   T U(§)u(cT(u)/all u) and 
^ * a In a 

1 = [nivfiv^,   ...,  u^))/«^! (7(^(1^,   ...,  uk)))U{rr(i;)/all u)u{e). 

For (Yl,   ..., Yk) in ra 
x •••  * T      and u = (0^,   ..., 0^),  let 

^(y^YjS  ... Yk^) ■ ^(«^^(Y^S  ... «W(Yk)5« 

Let G(0  " (e).    For U  = (fll^,   ...,  Q^),   (u^   ...,  V^)  in ^ X   ...  X  1 
1 V 

(x^  ...,  XJP in r    x ... x r    . and 3^ » fa (x^^,^),  let f(e,cr(u)) 

-»(u)!^1,  f(^)§k+1,e) = €, f(6,e) - e,  and 

V/e first show that for 1 = (K,Z,r,T,f,fi"),   (^S")  is a single-tape AFA.    Then we 

consider £{$) and i:t(fl). 

Intuitively, Q is the single-tape AFA obtained by taking the tapes of 

each finite set of tapes and placing them on one tape,   in the obvious order, 

with appropriate separators.    Foraally,  we first note the following (for 

u = (Qty   ..., 0^)): 

(1) fC-rCuH^ ... SXjjS, -r(u,(l(a1,v1),...  , l(ak,Yk))))-n<u)ix1 -..^S 

for all ^(u)^^.   ... §x.§  such that 6(a(u)Sx1   ...  ^\i) contains a (U^Y-, .. .^YJi • 

(2) For all x,  f(x,7(u)) is In (a(u),C)* ^(0) and f(x,e) is in U,0). 

For each (u,,   ...,  u. )  i-i I    x  ...  x I      and 1'    ,...,;      as in (e)  of the 
i K a^ "k ^ \ 

definitio.i of an AFA-schema,  T ,     #, „  \N 
=U f   'J(T(U),S}. 

alu,^, ..., u^};  k ^ 

^ 'Functional values are always to be 0 unless otherwise stated. 
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Hence (T, I,f,g) is an AFA-scheraa. 

Suppose that D = (^,21,6,0 ,F,u) is an arbitrary multitape acceptor 

in &.    Let a    and r    be new symbols in K and D = (KJj{a ,r ),  ZL,ß,q ,   Cr )), 

\^iere 0  is defined as follows: 

(3)    (q'^M^,  ..., v^))) is in rc^ayaCvHYj^ ••• 5Yki) if 

(q'^u^   •••» \)) is in ^Cq^a^Y^   ..., Yk)). 

(k)    (ro,€) is in 6"(p,e,CT(uKkfl) if p is in F. 

(5) r(^,c,€) ■ ((4»<T(»))). 

Clearly L(D) = L(D) and D Is qua si-realtime if D is quasl-realtime.    Ilius 

X(Ä) = X(r) andX^«) c X^f). 

Clearly L(D) = L(D) and D is quasi-realtlme. Thus X(JO) C X(fl")<ind Xt(«) c Xt'(Ä'). 

Now let D = (^,1:^6,a ,F) be in f. Note that many different niv)  might 

appear in D. Let 

S = {"/(q'^aC'j)) in 5(q»a,€) for some q and a). 

We may assume that if (q'^CiOäu-SJ  ... uA) is in 5(q,a,CT(u2)§Y1 ... ^Yk5)» 

then 15,= u = (QL,   ..., a. ),  where u. is in I      and Y^  is in c    (F    ),  I £ 1 < k, 

and u,  is in S.    (For no other type of rule can be applied in the |— relation.) 

Since S is finite,   there exists some u    =(cx,,   ..., a ) such that if u is in S, 

then u = (a. ,  ..., a,  ) for some 1 s J   < ... <J   s n.    Let K' = 
Jl Jk IK 

KjX (9U{€)).   Let D' = (K/,2:i,6',(qo,€), F*U),  u0),  uhere 5* is defined as 

follows (for arbitrary    u = (a, ,  ..., u,  )): 
Jl Jk 

(6) ((q',€),(3L ,   ...,  r   )) is in 6/((q,€),a,(e,   ..., €)) if (qSe) is 
1 n 

in 6 (q, a, c). 

(7) ((q'€),(la ,   ...,   la ))is in 6/((q,u),a,(€,   ...,  t)) if (q'e)  is in 

k+1 1 n 
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(8) ((q',uMl„ ,   ...,  la  )) is in 6/((qje),a,(€,   ...,   c)) if 
ul n 

(<1 »T(U)) is in 6fq,a,€). 

(9) ((q',u),(u{,   ...,  u^))  Is in6/((q,u)>a,(Yp   ...,  Y^))  if 

(q ^(u,^,   ..., v^))) is in 6(q,a,T(uHY1 ••• ^Yk§ i »here Y^^ in ra     for each 
Ji 

i, u^ = u    and Y^ = Yj^ for i in {j^   ...,  J^),  and u^ = la   and Y^ = e for i 

not in {J,,   ...,  j, ). 

It is readily seen that I^D')  = L(D)  and D    is quasi-realtime if D is quasi- 

realtirae.    Thus X(fl)=£(T) and X  (ä) = £"{0),  whence equality in both cases. 

3ince each fl    may be considered a multitape AFA,  we have 

Corollary.     If (H,*) is a niultitape AFA,  then for epch u  there exists a 

single-tape AFA (~,^)  such that X(5> J:(fl   ) and X^J")  = Xt(fi   ). 

Using lierama 1.1,  we are able to apply results of [5] to multitape AFA. 

Since we are dealing with acceptors,  we ure naturally interested in 

various families of sets of words.    We recall some terminology from 

[7 , 5]. 

Definition.    A family of languages is pair ''^X),  or X when Z is understood, 

where 

(1) £ is an infinite »et of symbols, 

(2) for each L in X  thero  io a ri.,i ...* set LJZL such that LCZ.,    and 

(3) Wo for some L in X. 

Ihe families of languages we are most concerned with are now given. 

Definition.    An abstract family of languages (abbraviated AFL)  is a family 
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(6) (7) 
of languages closed under the operations of U, •, +,   c-free homomorphism     , 

Inverse hanomorphism,  and Intersection with regular sets.    An AFL is said to 

be full if it is closed under arbitrary homomorphiBm. 

It vas shown in [5] that for each single-tape AFA i, X (fl) and X are 

AFL containing {e},  with X(JO) being full (and conversely,  for each AFL X 

containing [e],  resp.  full AFL X, thore   exists a single-tape AFA *  such that 

X (»)) = X,resp. X(«) C X).    From Leraaa 1.1 we therefore get 

Theorem 1.1.    For each multitape AFA 4, X (fi) and X(fi) are AFL containing ie], 

with X(*) being full.    Furthermore,  for each u, X (fl  ) and X(fl  ) are AFL 

containing U), with X(fi  ) being full. 

One of the operations upon families of languages in vhich we shall be 

interested is intersection.    This leads to 

Notation.    For families of languages X ,  ..., X    let 

X.A ... A X    = {L.n ... D L /each L.  in X.). 1 n 1 n' 1 1 

We now introduce some aotation to describe certain families of 

languages related to a given family of languages. 

Notation.    For each family of languages X let 

(6) +00i»0Dl i+1 i x   'For each set of words A, A ■   U   A    and A    =   U    A , vhere A        = A A, 
iil, and A0= U). i»l iK) 

u 'A mapping h from El into Zp is a hcmomorphiam if h(xy) ■ h(x)h(y) for all 
x and y in 2L.    If h(x) ■ € Implies x-c,  then h is^said to be e-free. 
The mapping H** of svibsets of E. into subsets of XL defined by h--KY)= Ix/hfr) in Y) 

# c -'- 
for all YW2- is called an inverse homomorphism. 
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(a) ^(.C) be the  smallest AFL containing X. 

(b) ^(X) be the  smallest full AFL containing X. 

(c) M{£) = {h(L)/L in X,  h an e-free homomorphism). 

(d) ^'(X) = {h(L)/L in X,  h an arbitrary homomorphisra). 

(e) ^(i) be the  smallest AFL containing X and closed under intersection. 

(f) ^(X) be the smallest full AFL containing X and closed under 

Intersection. 

(g) A X  = (L. n  ...  H  L /n*l,   each L    in XJ   =    U (X A  ... A X  ), X = X 
1 n 1 nil    1 n        1 

for each i. 

Clearly the families in (a),   (b),   (e),  and (f) exist. 

Finally,  we summarize a number of AFL relations (some already known) 

which ar^ used extensively in the  sequel. 

Theorem 1.2.     Let X, X.,   ,,,,£.£..   .... X    be AFL . 
  '1' '     n'     1'        '    m 

(n)     }1(X)=7(X). 

(b) iKXjA  ... A Xn)  -?(XA  ... A X ),  and 

«(X^  ... A Xn)   = ^(«(X^   ...  A Xn))  = ^(X A   ...AX). 

(c) 11(X A   ... A X   )A  U{£' A   ...  A X') C  ^(X.A   ...   A £ A X' A   ...  A X') 
1 ni ml nl m 

and i4(X A   ...  A XJA  M(X' A   ...   A X') C  jI(X,A   ...   A X A X' A   ...   A X'). 
-L nx mi ni m 

(d) il^A   ...   A  Xn)   =  Vi^)   A   ...   A   iKX   )). 

(e) /n(X)  = JI(AX)  = y(AX),   and 

7n(x) = II(AX) -y(Ax) -»(«(x)) -»(A»(X)) -yn(«(x)). 

Proof, (a)    Tliis equality is in [11J. 

(b)    Tiie first equality is ia [TJ and the second follows from the first. 
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(c) Let L.  be in £.A  ... A X    and Ln    in X' A  ... A X7.    Let h,  and hn x 1 n21 in 12 

be homomorphisms,  and let L = \i\) H h (L ).    Since f(X)nY= fLxHf'^y)] 

for arbitrary sets X and Y and an arbitrary function f,  L = h^L-fl h~  h   (L )). 

Since n{£^ A  ... A X^) and «(X^ A ... A X^) are AFL, h^h  (L) = h (L') for 

some homomorphism h_, e-free if h- is e-free,  and some set L' in X' A  ... A X'. 

Then L = h^I^O h (L^)) = h luCh"^!^^ L').    From [?], X/ ... A Xn is closed 

under h" .    Thus L is in «(X^ ... A X^A X' A ... A X').    If ^ and h    are 

e-free,  then h.h- is €-free so that L is in W(XnA ... A X A X' A  ... A X'). 
'13 xlnl m' 

(d) Clearly W(X  ) = W[Ji(X  )].    Continuing by induction,   suppose 

H(X.A  ... A X    .) = W[«(X.) A ... A Ji(X    ,)]-  Iä2.    Consider «(x^A ... A X  ). i n-l 1 n-l   ' In 

Obviously 3((X1A  ... A Xj = «[«(X  ) A ... A 
w(^n)].    Furthermore, 

kk*])  A   ...   A  S(Xn)] C  M[W(»(X1)  A   ...   A  W(Xn-1)) A «(Xn)] 

= «[^(X^  ... A £      ) A H(X )], by induction, 

cWjA   ... AXn-1A Xn)],  by (c), 

= M(X1A  ... A Xn). 

Ohus «(XjA   ...  A Xn)  = kk^) A   ...  A il(Xn)]. 

(e) Consider the first sequence of equalities.    Clearly W(AX) = ?(AX) 

C ^(-C).    To get equality,  it suffices to show that Ji(AX) is closed under 

intersection.    To this end, note that 

H(AX)A U{AZ)  =    U «[X A   ... A X] A U «[X A  ... A X] 
m^l rail 

U    («[X A   ...  A X]    A  W[X A   ...  A X]   ) 
= m,n»l 

C    U    W[X A   ...  AX]ra+n    ,by (c), 
ra, nil 

C ]i(AX). 
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For the second sequence of equalities,  we have J^iZ)- H^) = 5r(A£ )• 

Replaclnc X by J^X), we have ^(X)) = Ö(AÄ(X)) = S(AÄ(X)),    From (d), we 
A A 

readily ^et 3I(AX) = JI(AJf(x)). Hence the result. 

Corollary, (a) If mz2 and X^ ..., X^ are AFL, then 

»[«(X.A ... A xn-1) A j:nj = w(x A ... A xn), 

(b) If ni2 and X,. .... Z    are full AFL, then 

»[^(X.A ... A X  .) A X ] - 3A1(X.A ... AX ). v 1       n-l'   n   v 1       n7 

Proof.    It suffices to show (a),  a similar argument holding for (b).     Since 

V  '•• A J:n-1 Z )i(J:iA  •*• A Xn-1)' 
JI(X.A   ...  AX   ) = M[«(X.A  ...  A X     .) A X   ]. v  1 n7 v  1 n-l'        n 

On the other hand, 

JP(X.A   ...  A X     .)  A X   ]  = J1[3J(X.A   ...   A X     .) A «(X   )] 1   v  1 n-l'        n v  1 n-l7        x n,J 

C «[«(X.A  ...  AX)], by (c) of Theorem 1.2, 

= 31(X-A   ...  AX   ). v  1 n' 

Combining, we get the desired equality. 

Section 2.    Multitape AFA and Intersection 

In this section we represent the smallest AFL containing the intersection 

of languages from a finite sequence of AFL in terms of a multitape AFA.    In 

particular,  we define ^ A  ... A 4n for the  sequence of multitape AFA 

^l*   '**' 'V    ^'Ilie aPeT&tar A for multitape AFA plays a basic role throughout 

the paper and is analogous to the cross product operation x in set theory.)    We 

then show that WX1^) A  ... A X^.^)) = £t(S1 A  ... A fi  ) and 

"(XCy A  ...  A X(«n))   =X(fi1 A   ... A fln). 
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We now introduce the operation A for multitape AFA. 

Notation.    Let ^ be an abstract set, <^ a simple ordo-  on /f  ,  and 

U^Q>O/0 ln/<) a family of multitape AFA, with Q = (K,E,QQ,< ,nQ) for 
p    p p p    p    p 

each 0.    Then Afl   is the multitape AFA (0,AflA), \Aiere Q = (K,Z,CI,-<,|i) is 

defined as follows: 
ATP ^0 

(1) a =     u    (ax (p)). 
ß inÄ    P 

(2) n(a,ß) = us(a) for each ß in ^ and each a in a . 

(3) (a,0) < (a^ß') if and only if either ß = ß' and a «a',  or P^   ß'. 

If /<   is a finite set ^ = (fl-.   ...,  ß )  and < ,is the order on  4* as given, x n (O 

then Afl^ is written as   A     fi      or fia    A ,.. A fl    . 
^ isi^n   ßl ßl ßn 

Obviously the set of words accepted is independent of the order "< , on A' . 

Frequently ^ is a subset of the integers.    In this case,  unless stated 

otherwise, "< o is the natural order of the integers. 

If the Q    are pairwlse disjoint,  then we may identify each (a,0) with a 

and write fl as    U GQ.    In the  sequel,  we shall always assume (without loss of 
ß in^ö ß 

generality) that the 3 are pairwise disjoint. 
p 

For each multitape AFA (0,4),  fl may be identified with     A     fl  . 
a inCt   a 

A 

We now turn toward showing that X(fl1 A ... A fln)= «(XOS^) A ... A X^)) 

and Xt((31 A .,, A « ) - JJ(X («.) A  ... A -^(fi^).    That is,  the family of those 

sets accepted by at least one acceptor (quasi-realtime acceptor) in the 

AFA .0..A ... A fl    coincides with the family of the homomorphic (e-free homomorphlc) 

images of the sets in X(fl1) A  ... A £(fln) (Xt(fl1) A  ... A Xt(fln)).    First 

though,  we need two lemmas. 
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Lemma 2.1.     For all multitape AFA ^ and fl^ 

Wj) A X(«2) C X^jA fl2) 

and     it(«1) A Xt(fl2) C ^(«jA «2). 

Proof.    For each i,   let Q.  = (K,Z,a ,< ^ ) and let D. = (K^Z-^^q.^F.,!?,) 

be in fl^  with u1 =(0^,   ..., 0^) and u2 = (ß^   ..., ß^).    Let 

u3= (a^   ...,  0^,  ß^   ...,  ß^), K3 = K^ K^   and F3 = F1 x F^ 

Let D^ = (K ,2^ E^S  ,q ,F ,u.),  where 5, is defined as follows: 

(1) If a is in 2^(1 E^  (q'^u^   ...,  u^))  is in ^(q^a^y^   ...  ,  Yk)) 

and (p',^,   ...,  üz)) is in S^a,^,   ...,  y'j)),  let ((q'^'), 

(u^   ...,  Uj^  üjj   ...,  u^)) be in 53((q,p),a, (y^   ..., Yk, Y^   ...» Yp)« 

(2) If (q',^,   ...,  u^)) is in ö^q^e^Y^   ..., Yk))>   then for all 

(y^,   ...,  YO  in %    and p in K2 let  ((q'^),   (v^,   ..., U^,  iCß^Y^),   ...,1^Y£))) 

be in ^3((q,p),^(Y1»   •••»  Yk» Y^   ...,  Y^)). 

(3) If (p',«,   ...,up) is in 62(p,e,(Y^   ..., YJ)),  then for all 

(Yy   •..,  Yk)  in GD    and all q in ^ let ((q^pO, Wo^Y-,),   ... ,l(o^Yk),vi^ ... , up) 

be in 63((qJp),e,(Y1,   ..., Yk> Y^   -.., Yp)« 

Clearly L(D )  = LCDJ^) 0 L(D2) and D- is qua si-realtime if and only if 

D. and D? are quasi-realtlme.    Hence the result. 

Lemma 2.2.     For all multitape AFA fi.   and 6 

(a)     «(£t(Ä1) A X*«)^) = ^(«^ fig) 

and      (b)    ll{X(fi1) A X(n2)) = M(Xt(<l]L) A X^^))  = XO^A fl^. 

Proof.    For each i,  let 0    = {K,I.,CL.,< f\i.).    Consider (a).    By Lemma 2.1 and 

Theorera 1.1,  H^i^) A Xt(q2)) = n[Zt{^ flg)]  = X^^A fig). 

To see the reverse containment let D = (K-,E1,fi,q ,F,v) be quasi-realtime and in 
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•3, with u = (0^,  ..., 0^, ßp  ..., ß£), a^  ...,0^ InCL, and 

ßp   •••» ßjj In dg.    lÄt L = L(D).    For each q^a^^   ..., Yk+/e ^^ ***•* 

# (^(^^(Y^  ..., Yk+1))) >0(   ) and each 1,  1 s 1 s ^«(^a^y^  ..., Yk+J,))) 

let (q^a^Yp  ..., Yk+^)»i) be a new element of L.    Let Z« be the set of all 

such (q,a, (Y^  ..., Yk+x),i).    Clearly Z^ is finite.    Let c be a new element 

of E.    Let h, and h    be the homomorphisms on Z    and (Z-UCc))    resp. defined 

by h1((q,a,(Y1,   ...,  Yk+jt),i)) = a if a/e and is c if a = e,  and h2(a) =a if 

a /c and h (c) = e.    We shall show that there exist L.  in •Ct(41) and L    in 

Xt(q2)  such that L = h^I^n L2) and Lg is e-limited on h^I^fl L )/9^ 

From this it will follow that h^L 0 L ) is in «(X*^  ) A Xt(')  )),  an AFL 

containing U)  [?],   thus that hgh^L 0 L^) is in «(X^^^) A Zt{H  ))  [5]. 

For 1-1,2 let V± = (K^Z^Ö^q^F,^),   vÄiere u;L = (a^   ..., 0^), 

u2 = ^1*   ***' ^i)'  and 5i ls deflried as follows:    For each 

(q^MYj*   •••> Yk+Jl),i) in Zg,  let the elements of 6(q,a,(Y1»   ..., Yk+ji)) 

be simply ordered in some way.    If (q'^u^   ...    ^+4)) is the i-th member of 

KC^MY^ -•-> y&i))» let 

51(q,(q>a,(Y1,   ..., Yk+ji)>i)/   (Y^   •••»  Yk)) = Ka'»^!   •••,  Uj^))) 

and     SgUUa,^,   ..., Yk+-e),i),  (Yk+1*  ••• Yk+ji);=((q/,(uk+r  ..., V^^3* 

Let 1^= L(D1) and L = L(D2)'    Since 6    and 6    have no e-moves, L.  is in JC ('()1) 

and L2 is in Xt(^2).    Clearly L S b2h (L^ L ). 

'   'For each set E, #(E) denotes the number of elements in it. 

v  'A horaorr.orphism h is e-limited on a set L if there exists löO such that for 
all w in L,  if w = xyz and h(y) = e, then | yf<k . 
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Consider the reverse containment.    If € is in L-O L^ then a    is in F 

and e  is in L.    Suppose w^c is in LJI L-,  with (w|  - n.    Then 

w = (P^a^Yu, ..., Y1(k+i)), tj ... (Pn>V(Ynl' •"' ^n^H)^ Jn) 

for scne p^ ..., pn in ^a^ ..., an in EjüU), each (y^, ..., Y^^)) in 

aD,  and 1< ä±* K^I^CY^   -", Vw^+jjO))! 1 ^ i s= n.    For each i, let 

(Pi»(ujLii •••» Ui(k+Ä)^ be the ^i'1* e:Lement of Hvif\,(y±1, •", Vwj^jO)« 

By definition of f—> 6., and 6^  it follows that 0 ■ P^I' = p/+1»  1 s r < n, 

and p'   is in F.    F\irthermore,   there exists y.,,   '"»^•\(v^i\f  ^pV   •*•' 

y2(k+2), •', yn(k+£) ^^ *•* yu = ••• = yK^) ■ ^y(i+i)r " 

fa (yir'  ^r^ and e  = fa (ynr'Unr^ for ! ^ i < n>  ! ^ r s ki  ^d 
r r 

y(in)(k+r) 
= f|3r

(yi(k+r)' "Kk+r)5 and e = fßr
(yn(k^)'  Un(k^)) for 

1 s i < n,  1 ^ r ^.    Let Pn+1= p^ and y(n+l) ^ ...  y(n+l)(k+£)  ■ t.    Bien 

(P1»ai,(y11,   ..., yidt+x)))^ (P1+1*€»(y(i+1)1*   •••»  y(i+i)(k+^)^ 

for 1 s: i s n,  so that a.  ...  a    ■ hJnAv) is in L.    Therefore hh (T^n L )= L. 

Furthermore,   if 

h2h1((pr,ar,(Yrl,   ..., Yr(k+£)),Jr)   ...   (Pr+^
a

r+8'(Y(r+8)l'"-'Y(r+8)(k+Ä))' 

then h.. ((p ,   ...   )   ...  (p • • •)) = c        and a   - ...   = a        = €.    Then 

(Pr>  «,(yrlj   •••* y^k+A))^   " (pr+s+l'€'(y(r+3+l)l',,,'y(r+s+l)(k+A)))' 

Since D is quasi-realtirae, there exists an integer t such that for all 

configurations C = (^€,(7^   .-.,  Yk+i)) and c' = (q',€,(Y^   ..., Yk+jl)) of D, 

C f—C7  Implies ist.    Hence s+1 s t.    Therefore h    is €-limited on h (LH L-). 

Consider (b).    It was shown in [5] that for any single-tape AFA S,  thus 
A        4- 

for any multiLape AFA 0 by the corollary to Lemma 1.1, X(^) = .U(X (fl)). Hence 
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A    t «(«iA^) ^(X^iK A4)2)) 

■idKX^AX^ig))], by (a) 

= A(il(4:t(Ä1)) A ftCX^g))), by OHeorem 1.2 (d), 

■ ftU^) A X(«2)). 

Theorem 2.1.    For all multitape AFA A^   ..., 4 

(a)    «(X^tj^) A ...  A Xt(Än)) = Xt(«1 A ... A Än) 

and      (b)     ^(i^ A  ...  A X^))  - WiiJ A  ...  A X*^))  = X^ A  ...  A fl^. 

Proof.    For each i let Q.  ■ (K,!^,"^,^). 

(a)    Clearly «(Xt(Ä1)) = Xt(«1),   so that (a) Is true for n=l.    Continuing 

by Induction suppose the theorem Is true for n-1.    Now 

X1^ A  ... A «J - £\i^1 A  ... A fl^ A fin) 

- U{£t{fi1 A  ... A fltt-1) A Xt(in)),  by Lemma 2.2, 

- «[Ji(Xt(fl1) A  ... A S^iü^)) A »KX*^))], by Induction. 

now    ]i[Ji(xt(a1) A ... A Xt(«n-1)) A »(X*^^)] 

= M[)i(Xt(«1) A ... A X*^    ,) A Xt(fln))], by Theorem 1.2  c, 

-JKX^A  ... AX*^)) 

C m^iij) A  ... A X^fi^)) A «(XV^)], 

since X^fij^) A  ... A Xt(Än_1) C ü(Xt(fl1) A ... A i^^)). 

HIUS we have equality.    Hence 

«(Xt(«1) A  ... A z\S)n)) «= »[JKXt(Ä1) A  ...  A X*^^)) A X^^))] 

-Xt()01A   ... Afin). 

^ 
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(b)    iVcy A  ... A X(fin)] = iniVci)^)   A ... A ö(Xt(«n))l 

= «[X*^   ) A ... A X*^   )),  by Theorem 1.2 d, 

= «[«(Xt(fl1) A  ... AXt(i)n))] 

»JVC^A  ... Ain)), by (a) 

= X(Ä;L) A  ... A fin). 

Examples,   (l)    Let Ä    denote the AFA of l-counters.    Now it Is known that every 

recursively enumerable (r.e) set is accepted by at least one 2-counter  [3> 

19].    Thus the family of r.e.  sets is X(fl    Aft), which ia fyx^fi  ) AX^fl  )) 

by Theorem 2.1.    Examinine the proof of Lemma 2.2,  we see that every r.e.   set 

is expressible as the honomorphic imace of a pair of deterministic realtime 

1-counter lancuages.     Since it is undecidable  if an arbitrary r.e.   set is empty, 

it is undecidable if L-D L. = 0 for arbitrary deterministic realtime 1-counter 

languaces. 

(2)    Let Ä    be the AFA of pushdown acceptors (pda).    The family of list 

lan^uaces defined in  [ 8] is the family of e-free lancuaces^-'  in X (Ä A fl  ). 

By Theorem 2.1, ^ (^ A Ä  ) = iJ(Xt(.0   ) A Xt(fl   )).    Let £1 
be the e-free languages 

in X (fl  ).     Clearly the family of list languages is then ^(-^A X.),     Let 

X _ be th(i family of e-free context-free languages.    It is shown in [I1*] that 

X        = X  .     Therefore the family of list languages can be characterized as 

M(XtC/ J:
€CF.)    It is proved in [11] that H*^ ^eCF) is the family of 

lanßuaies defined by a context-free  "co-.itrol"  set acting on an "e-free" context- 

free grammar,   thereby providing a second characterization of the list languages. 

A third characterization will appear in   Section 3- 

^ 'A set is e-free if it does not contain e. 
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We now turn to «(AX^ä)) and i(AX(jO)). 

Notation. If 4 1B a multitape AFA, then A* Is the multitape AFA A« , 
a   n 

where 0 ■ (n/nil) and Ü    - Ä for eacn n. n 
Theorem 2.2.    For each single-tape AFA (n,Ä) 

(1) XV«)  -«(AX^i))) ■>n(Xt(«)). 

(2) X(A«) -M(AX(«)) -^AX*«)) -»n(X(f)) -S^U)). 

Proof.  (1)    By'Rieorem 1.2 e, «(AX^«)) «^(X^*)).    Suppose 

Q = (K,E,r,I,f,g),    Ohen A«   Is the multitape AFA {fi,S), where 

T = (K,Z,a,-<,u), 0 - (l/lal), -< - <, and |A(1) = (r,I,f,g) for each 1. 

Let £    " f/, _\»    Now for each n, ü    may be regarded as the n-tape AFA, 
n        \ jmf  • #.,  n / n 

fl A  ... A 4 (n times).    By Iheorem 2.1,  therefare,X (4  ) ■ 

Ht%iß) A ... A X^Ä)).    Thus X*^) S Ji(A X^Ä)).     Then 

X^Afl )   - u X1^  ) B Ji(A X*^)).    On the other hand.   If L Is In W(A X*^)), 
n n 

then L*h(L.n ... 0 L) for some c-free hananorphlam h,  some nil,  and some 

languages L.,   ...,   L    In X  (fi).    Then L. D  ... fl L ,   thus L,   Is In X (il  ). 

Therefore «(A Xt(Ä)) C Xt(AA),  whence equality. 

(2)    Now X(A fi) - W(X(A fi))- U{Z\A fl)) 

- i(«(A X^*))), by (1) above 

-«(AX^fi)) 
A t 

- ?n(X (*)), by Theorem 1.2 e. 

Then             X(A«) -i(A X1^)) 

- Ji(A «(X^*))), by Theorem 1.2 e, 

■ JKAX(«)) 

- yn(X(i))), by Theorem 1.2 e. 
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Hence (2) follows. 

Using the previous result, we now present a characterization of a (full) 

AFL closed under Intersection. 

Theorem 2.3« X Is a (full) AFL containing U) and closed under Intersection 

If and only If there exists an AFA (0,JO), 0 - (K,2:,a,<,n), such that 

X = X^JO) (X = X(fl)), Q Is Infinite, and u(a) = u(ß) for all a and ß In a. 

Proof. Suppose {Q,&)  Is an AFA such that X « X^fl) (X - X(JO)), Q Is Infinite, 

and u(a) ■ M,(0) for all a and ß In 2. Clearly X contains (e). From the 

X (JO) and X(T) point of view, there Is no loss In assuming Q Is countable. 

Then 4 ■ A « ■ A 9  vhere &    = A    for all a. The "if" then follows from 
a a   J. 

Theorem 2.2. 

Consider the "only If,"    Suppose X Is a (full) AFL containing U] and 

closed under Intersection.    Hence there exists a single-tape AFA 0.  such that 

Xt(«1) = X (X(.'51) = X).    By Theorem 2.2, Jtt(A «^ = 7n(Xt(fi1)) = ^(X) = X 

since X is an AFL closed under Intersection (X(A fl ) » ^n(X(Ä  )) = ^ (X) » X). 

The res'ilt then follows fror, th^ ffct that A fl    Is an AFA satisfying the 

theorem. 

Examples,   (l)  Let fl    be the family of pda and fl    the family of single-tape 

one-way Turing acceptors (i.e.,  the Input tape Is read one way).    It Is known 

that each Turing acceptor can be Imitated,  without loss of time, by some 

2-pushdown acceptor    3 I.    TtmB Xt(flp) c X^fl^ C Xt(fl    A fl  ) - «(X^fl  )A Xt(fl  )). 

Then N(A Xt(fl  )) = W(A Xt(fl_)) c «(A ^{S  )),  whence equality.    Therefore 
p -t r 

XV flp) = »(A X^flp)) = M(A Xt(flT)) = X^A DT). 
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In other words, L can be recognized In quasi-real time by a multitape Turing 

acceptor If and only If L can be recognized In quasl^realtlme by a multi- 

pushdown tape acceptor If and only If L Is the €-free homoraorphlc image of the 

(finite) intersection of context-free languages. 

(2) By a straightforward extension of results in [15] and [k],   it can 

be shown that for each n22, 

ra.      mm      m_ 
L ■{aD...a cao.-.a /m,, .... m atl) 
n i. n 

is recognized by a quasi-realtime n-counter acceptor but by no (n-l)-counter 

acceptor. That is, if * is the AFA of 1-counter acceptors and A. = fi for 

each lil, then L is in X^Ä. A ... A « ) but not in Xt(A A ... A « ,), Thus 
n        1       n l       n-l 

t\Me)  C «t(ic A fic) = HtHtJ  A X^^)) 

c IK**^) A X*^) AX^)) 

... , 

with each containment proper, forms an Infinite hierarchy of AFL properly 

contained in X- , the family of context-sensitive languages.  By contrast it 

is still open whether the family of list languages, the e-free languages in 

Xt(fi A « ) - U{Zt{6  )  A Xt(0 )), is prop«  contained in the family of 

e-free languages of W(It(fl ) A Xt(fl ) A Xt(fl )) or whether the iamily of e-free 

languages in X (fl ) is properly contained in X . 

In passing, we note below a specialized result between the A operation, 

linear hotnomorphisBs, and AFL. 

« 
Definition. A homomorphism h is linear on L c r if there exists k>0 such 

that |w|sk|h(w)| for all w in L. For each family of languages X, let 

Ulin(X) - (h(L)/L in X, h linear on X). 
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It is shown in [ 9 ] that W11"^) is an AFL for each AFL X. 

Theorem P.U. Given d^d^ and d3, «
lln(A X) - Mlin(XAy(L) ^(h))^  for 

every e-free AFL X^3 containing L = (vd w /w in {d^d ) )^'t 

Proof.  Since L is in £,  Ulln{Z^L)  A^L)) C Jilln(AX). It thus suffices to 

show the reverse inclusion. Therefore let L,, ..., ^ he in X, with 

n     * U L. = E-, E1 finite.  Let c be a symbol not in JL. Since 7(L) contains 

L = (wd-^w /w in (dpd } ), ^(L) contains the e-free linear context-free 

languaces. Therefore 7(L) contains the linear context-free language 

1^ = {wcwR/v in E*).  Let ^ = (Lj, c)n, S2 - 2*0(1^ c)
11"1!^, and 

L*  = (1^ cZ*c) ... (LncZ*c). Then S^TI Sg - {(wcwRc)n/w in £*), 

L'n S^ S2 = {(wcw
Rc)n/w in 1^ n ... 0 Ln), 

and 3,0 S- is in 7(L)A7(L). For each a in E., let a be a new symbol and 

T, = (a/a in ZL). Let h^ hp, and h_ be the homoraorphisms defined by 

h^a) = h1(a) = a, h^c) = c, h2(a) = a, h2(ä) = h2(c) = c, and h3(a) ■ a, 

for all a in Z.. Then 

L" = h-^L^n h-^s^n r*c(E2u(c))* 

= {wch (wR)c [h (w)ch (wR)c]n"1/w in 1^ 0 ... 0 L ). 

Since X is r-free, h? is linear on L" and L H ... 0 L ■ h (L") is in 

]ilin(XAy(L)Ay(L)). Hence «Un(AX)c Wlln(£A:?(L)A:?(L)), whence equality. 

^We write 7(L)  for 7((L)). 

(lä V"^'A family of languages X is c-free if each lanf^iage in X is e-free. 

^Let 6 ^eandCa.  ...  a )    = a    ...  a.,   each a. a symbol. 
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Section 3. Multitape Transducers 

In the previous section ve established dome connections between 

multitape AFA, AFL, and the A operations for AFL and «ultltape AFA. In this 

section we add an output tape to a multitape AFA to obtain an associated 

family of multitape transducers. We then note connections between multitape 

transducers, composition of single-tape transducers, and the A operation for 

multitape AFA. 

We first define multitape transducers. 

Definition. Let (0,4) be a multitape AFA, with 0 « (K,E,a,<,M,). 

Let (0,JO ) or 4 when Q Is understood, be the set of all 6-tuples 

M = (K1,IL,E;;>,6,q.u), called multitape transducers, such that 

(a) IC, 2L, and E are finite nonempty subsets of K, L,  and E, reap. 

(b) a Is in K^ 

(c) u "(a , ..., a ), k finite, a. In (2 for each 1, and a   < a   .  for 

1 s 1 < k. 

(d) 6 Is a function from K, X E^^Ufe)) X (r^ x • • • x ^ ) lnto the 

^   1       is, 
finite subsets of K, x (l  X ... X r ) X JL such that 

al        \ d 

"M 

Is finite. 

{(Yp ..., Yk)/«(<ba,(Y1, ..., Yk))^ for some q and a} 

fl Is said to be a multitape abstract family of transducers (abbreviated, 

multitape AFT). 

In a multitape transducer, K-, E,, and E are called the "states," 

"inputs," and "outputs," resp. 
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The notation for the movement of multitape transducers le similar to 

that for acceptors. 

Notation. Let M = (K,,E..,ZL,6,q.u) be a multitape transducer. Let (— be the 

relation on IL X zj X (F  X ,,. X T ) X r defined as follows: 
•^   ■L   al       "k   2 

For a In .-^(e), w In JL, and y' In ZL, 

(qjaw^Y^ ..., Yk)> /) f— (^'»^(Y^ •••» Y^), :''y) 

If there exist y.,   ..., y.,  each y^ in a^ (Y4)» such that 

(q/»(u1> ■■', \),   y) is in ^(^a^Y^ ..., Yk)) and ta  (Y^^) = Y^ for each 1. 

in 1 ♦ 
The relations  [— and f— are defined as In a multitape acceptor. 

A multitape transducer realizes a function In the follovlng vay. 

Notation.    Let M = {K^,L.,I.,t>,Q,v) be a multitape transducer.    For each 

w In E.  let 

M(w) = (z/(a ,w,e,e)|—■ (p,e,€,z)  for some p In K.J. 

For each L= Z*,   let M(L) ■       U      M(w). 
w In L 

We shall need some  special types of transducers. 

Definition.  Let M = {K ,L.,L ,6,q ,u) be a multitape AFA. 

(1) M Is e-Input bounded If there exists ncsO such that for all 

q.qSY^Y^  y,  and y',  (q^e^Y^   ..., Yk),y)!~ UV, (Y-J;   "•, Y^)^') 

implies n^ra. 

(2) M is e-output bounded if there exists nßO such that for all 

tkq'^w'.Y^   and Y^   («fcw,^»   -.., Yk)fe)  h2" (q'» w'» (Y^   •••  Yk)>e) 

implies n^m. 
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(3) M is partially e-output bounded If there exists nfiO such that 

for all ^q'^Yjj and YJL» (Q***^ ..., Yk),e)l—iz,*,(•*[>   -•->  Yk),e) 

implies I w| s m. 

Note that M is e-output bounded if it is e-input bounded and partially 

e-output bounded. Also, if M is partially e-output bounded then it is e-output 

bounded. 

Notation.    Let (n.,0,   ...,  (nn,fi  ) be multitape AFA and (Q^JO®),  ...,  (Q ,fi ) 

the corresponding AFT.    Let m. .      ITL IA»    and ITi. . be the sets 
1 n'      1 n In 

of mappings defined by 

V   ...fi    =lMnMn.r- Veach Mi ln *?}' 
1 n 

ttU .    = (M    ...  R,/each M.  in fi.  and partially €-output bounded), 
1 *"    n 

and     fU «    = {M    ... Mj/each M,  in &.,  e-input bounded,  and €- 
1 * * *    n 

output bounded). 

Let     \ >  fl    (X) = {f(L)/f in !T\Ä fi  ,  L in X}, 
1 " *    n 1 *"    n 

in 9  (X) = (f(L)/f in mfl fl ,  L in    X), 
1 '"    n 1 '"    n 

and   m*        . 4 (£ ) = ^(L)/' in fn* ^ ,  L in   X). 
1 ,,*    n 1 "'    n 

We now present tvo lemmas ^lich play a role analogous to that of 

Lemmas 2.1 and 2.2. 

Lemma 3.1.     Let X be an AFL containing (e) and (Q,fi) a multitape AFA.    Then 

^(XAX(A)>=ßfl(X), 

ii(xAX0ö))=iy.c), 

and     JKXAX^fi)): mJ(X). 



2 January I969 31 TM-738/05O/OO 

Proof. Let 1^ be In X and L2 in X(ä). Let Lg = L(D) for D = 

(K1,Z1,61,q »F^u) In fi, u = (OL, ..., a ). Let c and f be new symbols in L 

and K resp. Then LjC is in X and L c is in X(JO). If Lg is in X (fl), then 

L c is in X (JD). Let h be a homomorphisra from L.  into E . 

Let M be the inultitape acceptor (l^UCf), ^{c), L^  fi^^u), vhere 

v = {a ,   ..., O.) and 6 is defined as follows: 

(1) Let (q' (1^, ..., uk),h(a)) be in Ö^a,^, ..., Yk)) If 

(q',^, ..., u^)) is in 6^ q, a, (Y^ ..., Yk))' 

(2) Let (f,(l„ ,   ..., lv ),   e) be in 6  (p,c,( e,   ...,  e)) for all p in F. 

Then for w in IL,  q,q    in K^ 

(qjW^Yp  ..., Yk),c)f§-(q',e,(Y(,  ..., Yk), h(w)) 

if and only if 

(«fcW^YjL,   ...,  Yk))ff-(q/,e,(Yi;   •••,  Y^)). 

Thus MCl^c) - hd^TI Lg),   so that hd^fl L ) is in ^(X).    If h is e-ftree, then M 

is partially e-output bounded,  so that hil^f) L  )  is in tn.(j:).    If D is quasi- 

realtlme and h is e-free,  then M is e-input bounded and e-output bounded,  so 

that hfLjH  L2)  is in ^(X).    This completes the proof. 

Lemma 3.2.    Ixrt X be an AFL containing (e) and (0,fl) a multitape AFA,  with 

(Q,*  ) the corresponding AFT.    Then 

rnfl(x)c M(XA£(*)), 

fhÄ(X)= H(XAX(«)), 

and     ^(X^ JICXAX1^)). 



2 January I969 32 TM-738/050/OO 

Proof, Let L be in X and M = (K^^E^Ö^q^u) In A0, with 0- (a^ ..., 0^). 

Let 

n = maxdzl/Cp',^, ..., ^^z) in «(p^a^y^ ..., Yk)) for some p, p', 

u, u,, ..., V^g  Y^ •••, Yk). 

'Since GM is finite, n exists. For w in Z-, 1 ^| w| « n, let w be a new symbol 

and E- the set of all such w. Let D = (K^KXIL ), Z^U  ZL, ö^q^K^u), 

where 6 is defined as follows: 

(1) If (q',^, ..., \),z)  is inÖ^^a^Y^ ..., Yk)), then 

(a) ((q',i),(\^ ..., v^)) is in S^q^a^Yp ..., Yk)) i- z^- 

(3) (q'*^ •••* \))  is In SgCq^a^Y^ ..., Yk)) if z=€. 

(2) (cbC^a^Yi), ...» l(fl^Yk))) is ^ Sg««,!),^^, ..., Yk)) 

for all (q,z) in 1^ x Z and all (Y^ ..., Yk) in GM. 

Let L. = L(D) and L = Shuf(L,E*)r*  Then 1^ is in X(fl) and L2 is In X?
5' 

Let h be the homonorphlsm on ILU E. defined by h(a) = e for a In E1 and 

h(w)= w for w in E,. Then M(L) = h(LJ1 L^), so that M(L) is in il(XAX(jO)). 

Suppose M is partially e-output bounded. Then there exists  xich that 

(q,v,(Y1 ... Yk),€) n-(a *«#(Y{# .«•* Yk),€) implies |w|s m. Then for any 

xwy in L., h(w) ■ e implies |wl^ m+1. Ihus h ir e-limited on L. and so on 

LjTI L . Now JKXAX(fl)) is an AFL. Since X contains (e) and X()D)contains U), 

Ü(XAX(fi)) contains U). Therefore h{L£\  L ) is in if'(XA£(Ä)) [5], Hence M(L) 

is in U(XAX(ä)) if M is partially e-output bounded. If M is e-input bounded, 

^"'Let 1^ and L be languages. Ohen ShufC^L^), the shuffles of L, by L^, is 
defined as the set 

{w^ ... WJ/J/VJ ... wn in ^y^^ ... yn in Lg, nal). 
OS) 

It is known [5] that if X is an AFL, L is in X and R is regular, then 
ShufCT^R) is In X. 
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then obviously D is quasi-realtljne and L(D) is in X (Ä). Thus, if M is 

e-input bounded and e-output bounded, and thus partially e-output bounded, 

then h(L n 1^) = MCE) is in »(XAX^*)). This completes the proof. 

Using the two previous leninas we now derive 

Iheorem 3.1. Let (OpS,), ..., (Q ,fi ) be multitape AFA and I an AFL 

containing (e). Then 

n^   Ä (x) =»(XAX(fi ) A ... AX(fin)), 
1 *" n 

m^    (X) =w(XAx(fl ) A ... AX(a )), 
1 •*• n 

and  mj   _ ^ (X) = M(XA£t(Ä1) A ... A X*^)). 
1    n 

Proof.    We proceed by induction on n.    Ilie result holds for n = 1 by the 

previous lemmas.    Suppose rö2 and the theorem is true for n-1.    Then 

V  ... * W =\ \   ... ,      (X)), by definition, 
In n     1 n-1 

= in    («(XAXCA.) A  ... A X(«    ,)), by induction, •a i n-i 

= »(^XAXOa^ A ... A W^)) AX(fin)), by induction. 

Now     W[H(XAX(Ä1) A ... A XOJ^)) A X(fln)) 

3 «[XAX(a1) A ... A x(-fl )] 

= jÜlrrAX(/i1) A ... A x(Än)] 

£ »[^(jCAXCfl.) A ... A X(fin_1))AM(X(*  ))], by Theorem 1.2 c, 

=   «(H(XAX(«1) A ... A X(fln-1))AX(fln)]. 
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"\ 
A    A 

Thus     RL Ä  (X) = »[«(IAX(«.) A  ... A t(*    .»VTC*  )) 
1 n 

« Jl[XAX(Ä1)  A   ... A X(*   )]. 

In a similar manner. 

In n     1 n-1 

-fnfl [«(XAX(«1) A ... AX(<n-1)] 
n 

= WtAXi*^ A ... A x(fin-;L))AX(an)] 

« «[XAXC«^^)  A   ...   A X(fln)]. 

Similarly^ .  (l)  = «[XAC^fl.) A  ... A X^fi   )]. 
*»,   ... «) x n X n 

As a corollary, we get 

Theorem 3.2.    Letfa,,*.),   ...,   (0 ,fi   ) be single-tape AFA and X an AFL 

containing U).    Then ^    A A ü  ^^ = ^a fl ^ axul 

1      "*        n 1 ***    n 

1 n 1 n 

Proof.    \    A f\ & W = HtM&n A ... A Än)), by Theorem 3.1, 
In 

■ «(XAJ^XC^ A  ... A X(«n)),  by Theorem 2.1, 

» ^XAX(^1) A ... A X(Än)), as shown in the 

proof of Theorem 3.1, 

1 "*    n 

The proof that ^   A /\ & ^ ~ K t  W follows similarly. 
1 n 1 * *'    n 
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Remark. Theorem 3.2 asserts that the composition of single-tape transducers 

is equivalent to a multitape transducer, from the point of view of families 

of sets produced as output hy (l) all transducers, and (2) e-input bounded 

and e-output bounded transducers. In general, however, 

^    fl («C) ^ ^ A   A ^ (*)•    Foi» !•* X be the family of regular sets 
1 * *' n      1       n 

and $ = i) = * , the family of pda. Then 
x  2  p 

P p       ^ ^ 

which is the family of all r.e. sets. Since X(fl ) = X^fl ) [lh], 
P     P 

HL fl (X) - «(XAX(« >!(«)) 
P P v if 

= M(X(i)p)AX(fip)) 

- «(Xt(ilp)AX
t(«p)). 

Now M(X (iQ )AX (JQ )) contains only recursive sets (in fact, only context- 

sensitive languages and context-sensitive languages union Uj). Thus 

n^fl fl (X) is a proper subfamily of tt^ A ^ (X). 
P P P  P 

Example. Tha list languages have already been characterized as each of the 

following families: 

(1) The e-free sets which are recognized by quasi-realtirae 2-pda 

acceptors. 

(2) The e-free sets which are the e-free honomorphic image of the 

intersection of quasi-real.time pda languages, i.e., the e-free sets in 

n(xt(flp)AX
t(flp)). 
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(3)    The sets obtained from context-free control sets acting on €-free 

context-free sraramarB. 

Using the previous theorems we may add the following characterizations: 

{k)    The e-free sats obtained from partially e-output bounded pushdown 

transducers operating on context-free languages.  I.e.,  the €-free sets In 

% (^(«p)) ■ JKxt(«p)AX(fip)) - «(x^ysx*^)). 

(5) The e-free  sets obtained from c-outpuc bounded and e-Input bounded 

pushdown transducers operating on context-free languages. I.e., the e-free 

sets In toJuV)) ■ »(Xt(i)Ti)AX
t(« )). 

(6) The  €-free sets obtained from e-output-free pushdown transducers 

operating on context-free languages. [For, let 7 be the set obtained from 

e-output-free pushdown transducers acting on context-free languages. It can 

be shown that ITU (£ (4 )) c ^ c rnfl (X (i) )), the second containment by a 
P   P        P   P 

recoding argument. Since n^ (Xt(fl )) = »(£*(« AXt(fi )) - fo* (X1^ )), 
P   P        P   P     p   P 

P   P 

Section h.    Nested Multitape AFA 

In thin section we study "nested" multitape ftFA. We shall see that 

they allow a representation of the substitution of AFL Into AFL. 

Intuitively, a multitape acceptor Is "nested" If each move can change 

at most one storage tape, and all tapes to the right of this one are €.  In 

order to express these two conditions in our formalism we need to distinguish 

* 
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Identity Instructions In our acceptors. More precisely, ve have 

Notation. For each a and Y# let ^(Y) = (u In IC/^CY'^U) = Y' for all y' in 

^(Y)), vhere ^(Y) = (Y7Y in ^(Y")). 

By definition of an AFA schema, i|r (Y)^ 0 for each Y in 8^(0« 

We are now able to define a "nested" multitape AFA. 

Definition. A nested multitape AFA is a pair (0,4 ), vhere 

(1) (Q,Ä) is a multitape AFA, with 0 = (K,E,a,<,(i), 

and (2) fiN is the set of all D = (1^,2^,5,q^F, (0^, ..., 0^) in i with the 

following property (for arbitrary q ,q in K,, a in ILUU), (u., ..., u. ) in 

•k x ••• x let» 8Lnd ^1>  •"*  Yk) In GD): If (q', (t^, ..., 1^)) is la 

'(q^a, (Y,, ..., Yj,)) an(i ui  ^s not *** ♦/* (Y«) ^or  saine ^> "^en n. is in 

f (y.)  for all i^X and Yj^ = e far all i>A . 

N Each D in * is called a nested acceptor. 

Notation. Let X()BN) = (L(D)/D in ÄN) and £t{6li)  = {L(D)/D in *N and D quasl- 

realtlme). 

Note that if D is nested and (q,a,(Y,»   ..., Yk))|—i<l't£f(y{f   •••» Yv))* 

then there is at most one i with y.f y^, and either AiakorYi 
= e=Yj 

for i> i.    Thus at most one tape of D is changed and all tapes to the right of 

it are inactive,  i.e., are €. 

The meaning of the term "nested" becomes clearer if we consider some 

familiar AFA.    Suppose an acceptor such as a pda, a Turing acceptor, or a 

one-way stack acceptor [6] has the storage configuration depicted in Figure 1, 
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that Is, a tape vlth a read-vrlte head vhlch affects exactly one symbol of 

the storage tape.    ISils type of configuration Is usually reflected in the 

•        •• LJ •••• 

Figure 1 

formalism by a pointer synbol, say \,  and the definition g(xZ] y) = Z, vhere Z 

Is a symbol and x and y are vords which may have other restrictions, (in a pda, 

y = e; see Example ^ In [5] for the definition of a one-way stack acceptor.) 

In these cases, activating a tape Is equivalent to inserting a nev tape, 

initially e, enclosed In markors—say matched brackets~where the read-write 

head Is. Ihe nestir« condition says that the head cannot leave the bracketed 

unpe until the bracketed tape beconeb r. Ihis is equivalent to preventing 

the multitape AFA fron changing a tape until all tapes to the right are 

Inactive. Restricting the device to n tapes is equivalent to restricting the 

depth of the nesting of brackets to n. For pda and Turing acceptors, nesting 

does not affect the cooputatlonal power of the type of device. For one-way 

stack acceptors, we shall see later (Example 3) that nesting increases the 

computational power. We shall show in this section that nesting of devices is 

related to substitution in languages. 

N 
From the definition, it is clear that 4=4 for each single-tape AFA. 

However, In general a nested multitape AFA need not be a multitape AFA as 

« 
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defined in Section 1.    To motivate the use of the -word "AFA: after "nested 

multitape, " we now show that a nested multitape AFA is equivalent (from the 

sets accepted point of view) to a single-tape AFA, 

Lemma k,l.    For each nested multitape AFA (n»*  ),  there exists a single-tape 

AFA (n,D   such that ^(fl)  - X^fl")  and £{I) = X(«N). 

Proof,    Let S^Cu), T and g be as in the proof of Lemma 1.1,    For 

u = (OL,   ,,., a. ),  1 ^ Ä s k,  and u in I   ,  let cr(u,^,u) be a new symbol and 
A/ 

I * iaiv,i,u)/v = (a^   ..., o^), 1 s A ^ k,  u in Ia }u{a(u)/all u)uC€), 
m 

For u ■ (0^,  ..., 0^),  let f(e,CT(u)) = a(u)5      ,f(a(u)C      ,€) = e, and 
_ * # 
f(e,e) - G.    For u = (0^,   ,.., 0^),  (s^,  ..,, x^) ^ ^ x  ••• x rct'  £ ^^ 

that either ^ = k or x,  = c for all i>lt and u in T    ,   let 
JL 

HaCuKx^ ... xA,a(v,l,M)) = CJ(U)§X^ ,,. x^,, 

where x' = x^ for all i,  ifa,  and x^ = f   (x-,u).    By the same reasoning as in 
Jv 

Lemma 1.1,   (r,I,f,g)  is an AFA-scheraa.    Let n = (K,Z,r,I,f,g), 

Let D = (K1,Z1,6,q ,F,u) be in iß  .    Let q^ and r    be new symbols in K 

and D = (K-Utq .r Lz^T, q", (ro)),   where T is defined as follows: 

(1) ^(ve,e) ■ ((VCTCU)). 

(2) (r »e) is in r(p,€,CT^uH      ) for each p in F, 

(3) If (q'^Up   ,,.,  UyJ) is in fi^a,^,   ,,.,  Yk)),  then 

£"(q,a#(&)iYi-  • • • Yj.5)  contains 
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(a) (qVCu,!,^)) if YJL = e and ^ is in i|fa (e) for all i, 1^ 1 ^k. 

(la) U'lfrCu,^^)) if Y^e, Yi = e for a:LL i>'t' and ui ls in 

♦a ^i5 for 1 s i s k- 

(c) (qVCMfUjt)) if «je ls not in^a (Y^)» ^ Is in^a iy±)  for 
* i 

all i^, and 7^^= e for all i>i. 

Clears LCD) = L(D) and D is quasi-realtime if D is. 

Now let D = (^,2^,5,^,?) be in f. Let 

S = iv /{q',a{v))  in 5(o,a, e) for some q and a). 

As in the proof of Lemraa 1,1. we may assume that there exists u =(ct1, .... a ) o  1'     n 

such that if u is in S then u = (a, , ..., a. ) for some 1 ^ j, < ... < Xjt n. 
JX Jk Ik 

We may also assume that if (q ,a(u1,^,u)) is in 6(q,a,a(u-)§Y15  ...  Yv5)>  then 

v1 ■ v2 = (al ,   ..., a^ ) is in S,  u is in Ia   , Yi is in ^    (r*    ) for 
"1 k J^     ^ Ji     Ji 

1 s 1 s k,  and Yi = e for i> i.    Let D = (^(SUCc)),  ^fi^Cq^c),? x(e),uo), 

where 6,  is defined as follows (for arbitrary u ■ (a. ,   ..., a    )): 

(M     ((^»C),   (1^ ,   ...,  1^ )) is in 51((q,€),a,(e,   ...,   c))  if (q'^) 
1 n 

is in 5(q,a,€). 

('?)    ((^e),   (1^ ,   ...,  1^ ))is in 51((q,i;),a,(G,   ...,   e))  if (q'^) 
1 n 

is in 6 (q,a,a(u)§      )• 
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(6) ((q',v), (^ , ..., la )) is in6^(q,e),a,(e, ..., €)) if (q'^Cu)) 

Is In 5(qL,a;€). 

(7) ((l',u), (u[, ..., u^)) is In 51((q,U),a,(Y{, ..., Y^)) if 

(q'^rrCuj^u)) is in 6(^a^u^Y. § ... Y* §)/ vhere y, = € for all i>^, 
Jl     ^k        Ji 

u' = l(a. , y.  )  for all i^A, u' = u, and Yi = e and ui = ^ for a11 J not 

in (j^ ..., Jk). 

Then L(D) = L(D) and D is qua si-realtime if D is. 

From Lemma ^.1 there immediately follows 

Theorem ^.1.    Fo^ each nested multitape AFA JO
N

, X(iN) is a full AFL and X*^) 

is em AFL containing U). 

We no\^ present some definitions and remarks about substitution,   the 

operation to be associated with nesting. 

Definition.    Let L c 2, and for each a in ZL  let L c E .    Let T be the 1 1 1 a      a 

function defined on IL by T(e) = U), T(a)  = L    for each a in IL,  and 

T(a,   ... a ) = rCa.)  ... T(a ) for each a.  in £. and tel.    Then T is called a 

z! 
substitution,    T is extended to 2       by defining T(X) =       U   T(X) for all 

x in X 

X c 21. If T(a) C Ea for each a in Z^ then T is called €-free. 

Notation. Let Z^  and 1    be families of languages. Let ^(X.fX.) (cr(X ,X )) be 

the family of all sets T{L.),  vhere IJ* Z ,    is in X and T is a (e-free) 

substitution such that T(a) is in X for each a in £.. 
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We usually vrlte aCX^X  ) as X^^ a X    and ^(X^X  ) as S.^ a X . 

Petnarks.  (l)    Let X., and X    be families of languages.    Let T   ■ 

(L in Zjz not in L).    Then X^ Xg = X^a 1 ,    Note that I   is an AFL if X    is. 

(2) It was shown in [13] that a is associative on families of language'; 

dosed under isomorphism,  i.e.,  (X^ X  )a X    = X^CX a X ) if X^X . and X 

are families of languages cloae^ under isomorphism.    Tlie same proof shovs 

that a is associative on such families of languages.    Because of this associa- 

tivity,  we shall omit the parentheses in iterated applications of CT, resp. 

a,  ^Aien the underlying families are closed under isanorphism,  as in AFL, 

(3) Neither a nor a is commutative,  even on AFL,  i.e., both 

X a X    = X^r X.  and X a X    = X o X,  are false for AFL X1 and X .    For let 

XI ■ e the quasi-realtime one-way stack languages and X_ the context-free 

languages.    Then Xjj XJ: X., but X-a X c X    is false [16].    The situation for 

a follows from that for j by Remark 1.     [A separate example for a is to let 

X., be the recursive se-cs and X« the regular sets.    Then Xj^ X.  = X., but X.a X 

is the family of r.e.  sets and thus not X . 

{k)    If X^^ and X   are AFL, with X1 full, then X cr X    ■ X^ X 

Proof.    Clearly X-a X c X^ X  .    To see the reverse containment,  let L.C El- 

ba in X1 and T a substitution such that T(a) is in X- for all a in £-•    Let 

T, be the substitution on zT defined by TAB) = (a)  if e is not in T(a) and 

r^a) = {a,e) if e is in T(a). Since X^^ is a full AFL, T^L.) is in X,.    Let 
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T   be the substitution on ET defined by T (a) = T(a)-(€) for each a.    Then 

T (a) is in X    for each a.    Thus TCL.) = T^T-CL.)) is in S.^ l^  so that 

(5)    If X. and X    are AFL, with X    containing {e), then 

A A A A 

Proof.    Since ^(X^ is a full AFL,  «(X^ a X2 = «(X^^) 0 i2 by Remark ^. 
A 

Obviously X a X c ^(X1) a X .    To see the reverse inequality,  let L, be in 

X , l^c E-,  h a homomorphism of ZL  into Z-,  and T a substitution on Z- such 

that T(a) is in X    for each a in E •    Let c be a new symbol and T the 

substitution on (Z U{c))    defined by T(a) = T(a) for each a in Z   and T"(C)= (e). 
— # — 

Let h be the homomorphism on ZT defined by (i) h(a) = h(a)  if a is in Z.  and 

h(a)^a, and (ii) h(a) = c if a in Zj^ and h(a) = e.    Since h is €-free, h(L.) 

is in lv    Clearly TWI^)) = 7(^(1^)) is in X^ l^    Thus ${1^ l^ l£ Xg 

and the proof is coinplete. 

We now present two lemmas that play the roles of Lemmas 2.1 and 2.2 

of Section 2. 

Lemma If.2.     Let jfi.  and ä    be multitape AFA and fi, = $-A *«.    Tlien 

and     I(«J) a X(^) C X(fiN). 

Proof. Let C^ = (K,Z,ai,<1,Ul) for i = 1,2. Let D^^ = (^^d^q^F^u.) be 

in 4. and for each a in Z let D = (K ,Z ,6 ,a F ,u ) be in n  ,    We may 
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assume that K-fl K   = K 0 K.   for all a and b,  ajAi,  in Z..    By extending each 

u    if necessary, we may assume that there exists u. ■ (ß^   •.., ß.) such that 
M 

u    = u    for all a in ZL.    Let T be the substitution on JL  defined by T(a)= L(D ) 

for each a in E.a    We shall construct D_ in 4_  such that L(D_) = T(L(P-,))» 

Let D    ■ (K ,      U        £a*5v VF1'^^  where K, » IC.U        U        (K-X K ), 

u- = (a.,   ..., 0Lf ß-,   •••1 ß.),  and 6_ is defined a« follows (for each q in 

Ky  a in E^  and (y1,   .,., Yk) in GD ): 

(1) I«t (q',^,   ..., v^,  Ip ,  ...,  lp  )) be in «gCq^c^Yp  ...,Yk,€, ...,€)) 
1 * 

if (^'#(^1   ••., \)) is in fi^q^c^Y^  ..., Yk)). 

(2) Let ((q,^),   (1(0^,Y^,   ...,  l(VYk),  1^ ,   ...,  Ip )) be In 

^^^Ay^   '", Yk»  e,   ...,  c)). 

(3) lÄt((qJp'),   (iC^Yi),   ..., l(0^,Yk)* \t   -",  ^£)) be in 

^((«bP^MYj.,  •••* VY1'   •••'YJJ^ if (PSC^,   ..-, u£)) is la 6a(p,b,(Yj,...,Yp)» 

\Aiere pisinK, binZ, and (Y^,  ..•> Y£) in G    . 
a 

{k)    Let (q'^x^,   ..., u^  1^ ,  ..., lp )) be In 63((q1p),€,(Y1, ...,Yk*e,...,€)) 
i * 

if p is in Fa and (q7^^,  ...»v^)) is In fi^a,^,  ..., Yk)). 

Clearly L(D-) ■ r{lJ(j)~)),    Since D^^ and the D    are nested,   so is D-.    If D^^ 

and the D   are quasi-realtime, and T is €-free,  then D_ is qua si-realtime, 

(For if D1 has at most k, ewnoves and each D    at most k ,  then D» has at most x JL a a ^ 

2max(k /a) + k, + 2 consecutive €Hnove8). 



2 January 1969 U5 TM-738/050/OO 

nie reverse inclusions of Lemma k,2 are also true.    That is, ve have 

Lemma U.3.    Under the hypotheses of Lemna ^.2, 

and     «(ij) C X(«J) a *<«»). 

Olie proof of Lemna 4,3 is quite involved and is not especially enlightening, 

^s such,  it is given in the appendix. 

Leircna k,k.    Let (0.^4.),  ...,  (nn»*n) ha multitape AFA,  with rÄ2.    Then 

X*««^ ... A i)n)N) = X^J) a X^iJ) a ... a X^J) 

and     X((Y  ... A i)n)N) = X(äN) * X(^) a ... a X(«J) 

■ X(iJ) aXOB^a ... a X(/) 

■X^dCXCi^a... (TXCtJ)). 

Proof.     Suppose n=2.    By Leninas U.2 and U,3, 

X^^A i^")  - X^iJ) a X^iJ) 

and     X(iJ) ^ X(«J) C XCC^A fi2)N) C X(«J) CT X(iJ). 

Since X(iJ) a X(xJ) = x(xj) $ X(«*), 

X(«J) a X(«J)  - X(«J) 5 X(«J)  = XCCXjA «2)N) 

= Xt(j)^) a X(«2)» by Remark 5 following 

the definition of substitution. 
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Continuing by Induction,  suppose the result is true for n-li2. 

Consider n.    Then 

xV^jA ... A «n)N) = X^^jA ... A JP^)
11

) O X^äJ),  by induction, 

= Xt(Äj) er ... 0 '^«n-i) ^ xt(*n)* by induction, 

and     X((i1 A ... A «n)N) •= XCCijA ... A «n-1)N) CT X(«JJ)f by induction, 

- (X(Ä^) er  ... a X(«^))a X(«^),  by Induction, 

■X(iJ) a  ... ^X(«[J),  by Remark  5, 

- V(<i)) 5 (X(^) * ... ^ £(«»)), byRen.ark 5, 

■ ^(«J)) cA (X(«^ a ... a X(iN)), by induction, 

= X^äJ) S (X(«J) a ... a X(«J)),  by Remark 5. 

N Since £    = JO for a single-ta:?e AFA,  we Immediately get 

Theorem h.2.    Let (n.,*^),   ,..,  (Clr,A  ) be single-tape AFA,  with rß2.    Then 

X*««^  ... A Än)N) = X^^) a Xt(«2) 7 ... a X^fiJ 

and     X^ÄjA ... A i)n)N) = XO^) 9 X(Ä2) $ ... ff X(in) 

-X^) cf X(«2) rr  ...  C7X(fln) 

-X*^; 5 (X(«2)a ... aX00n)). 

Froti Theorem 4.2,  we derive 

Corollary 1.    If X.,  ..., Xn,  iß2,   ire AFL,  then so is Xyj X^  ... a X . 

Proof.    By induction,  it suffices to show the result for n=!2. 
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r'ousider n=2.    'There exist single-tape AFA A1 and 4    such that 

j:t(fi1) = XJjCuXe)/! in X^ for each i [5].    By Theorem k.2, 

zHüJ a tH*^ =Xt((i1AÄ2)N), 

so that X (4  ) rr X  (JD  ) is an AFL.    By definition of the operation rr («-free 

substitution), 

Xt(fl1) a Xt(il2) = X^) a X2 

■ (X^ X2)U({IU{€)/L in tj) a Xg). 

If X contains £, then X a X« = X (*.) a X (* ). If X. does not contain U), 

then X^ X2 = (L-{e)/L in X^^^) a X^ig)). 

In either case, X.a X    is an AFL. 

A    -   A Corollary 2.    If X^.,   ..., X , n&2,  are AFL,   then so is X.cr X^j ... a X . 

Proof.    Again it suffices to consider the case n=2.    If X    does not contain {e}, 

then X^ X2 - X^ X2.    If X2 contains (e),   then X^ Z^ = Ji(X1) a X2 by Remark 5. 

In either case, X rr X    is an AFL by Corollary 1. 

Corollary 3.    If X^^ is an AFL and X    is a full AFL, then X-c? X    is a full AFL. 

Proof.    Let ^ and A^ be AFA such that X*^)- X^CaiCej/L in i^ and X(JO  )=X2. 

By Theorem k.2, Xt(i1) $ X(42) = £{{6^ fi2)N),   so that X*^) 5 X(42)  is a 

full AFL.     Now 

X*^) a X(fi2)  -(Xjd X2)U{LU{c)/L in X^ Xg). 
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By Corollary 2, X^ X    is an AFL.    Since U) Is In X^ X    ((e) = T({a)) for the 

suostitution T(a) - U)), l^ t^ - Xt(*1) $ X(«2). 

Remark.    CorolIarleB 2 and 3 vere proved In [13] by different methods.    By 

Remark 1 of Section \t Corollary 2 implies Corollary 1. 

Corollary U.    Let (n,Ä) be a multitape AFA,  wich n « (K,Z,Cl,<,^).    ihen 

XV)= ^ «*(«„) a ... CT X*^ ) 
^ in a ^ n 

a1<... <an 

and      X(ÄN) = ^2 X(«    ) a  ... a X^ ). 
^ in a ^ n 

^< ... <an 

If a is finite,  say 0 = (a^,   ..., QL^t then 

XV) -X^i   )a ... (TX*^   ) 
x n 

and     £(«N) =X(il    ) a  ... a X(Ä    ) 
n. n 

-X(«    )^...^X(Ä    ). 
al n 

We now turn to the representation of the "substitution closure" of 

X^*) andXOö). 

Notation. For each family of languages X, let 

(a) ^(X) be the smallest Alii containing X and closed under e-free 

substitution. 
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(b) 4(X) be the smallest full AFL containing X and closed under 

substitution. 

(c) a(X) =   U   CTn(X),vhere CT^X) = X a X and a1+1(X) = ^(X) a X    for 
rßl 

each 1^1. 

(d) ^(X) =   U   ^(X), vhere ^(X) = X <? X and a.+1(X) = a.(X) 5 X for 
nil   n x xxi 

each 1^1. 

Ihus i(X)(i(X)) Is the e-free substitution (substitution) closure AFL 

generated by X. cTn(X) (an(X)) Is the "n-th level of €-free substitution 

(arbltrory substitution) of X Into Itself." 

If X Is an AFL, then from Remark 2 following the definition of substitu- 

tion, 9 (X) ■ X 9 .tt 9 X (n occurrences of a) and CT(X)=XCT...CTX 

(n occurrences o/.' a). 

We now present the result relating substitution closure and nested 

multitape AFA. 

Theorem h.J,.    Let £ be a single-tape AFA.    Then 

^((A*)1^) -a^«)) = AX^fi)) 

and     X((Afl)N) =5(X(«)) = J\Z{S))) 

•aW*)) = AX(fl)). 

Proof.    For each lal, let fi    = 4.    Then 

tHl*)*) =  u   X^OJ A ... A« )N) 
nil x n 
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=   U    **(•,) CT  ... a &*{*„)), by Theorem k.2, 
nil •L n 

■» 

and     X((AÄ)N)    =   U    X((i-A ... A*  )N) 
Mil X n 

=   U    (X(Ä  ) a ... CT •£(«)), by Thecxrem »1.2, 
nil ^ n 

■   U    (£(*,) a ... a X(fin)), by Theorem U.2, 
nil ■L n 

= a(X(Ä)). 

Since CTCX11^)) ■ ^((AA)11) Is an AFL containing 1*00) and closed under e-free 

substitution, ^(X^«)) c crCX^fi)). obviously a(Xt(«)) B i(Xt(«)), 

so that aU^i)) = iCX^Ä)). By similar reasoning, a(X(«)) = ^(X(«)) and 

rr(X(«)) = i(X(«)), completing the proof. 

Corollary 1. For eac»- AFL X, a(X) = i(X), and CT(X) and ff(X) are AFL. 

Proof. By Corollary 1 of Theorem k,2,  a (X) is an AFL for each nil. Since 

3 (X) = a +1(X) for each nil, o(X) = U cr (X) is an AFL. Similarly, using 
n     n nil 

Corollary 2 of Tlieorem 4.2, a(X) is an AFL. 

Clearly jn(X) C i(£) for each nil. Thus CT(X) = ^(X).  Since a(X) is 

closed under e-free substitution, ^(X) c (y(X), \Aience equality. 

Remark, (l) $(X) need not be a full AFL. For let X be the family of context- 

sensitive languages. Then X is an AFL and a(X) - £,  but £ is not a full AFL. 

The next corollary shows that 5(X) is a full AFL if X is a full AFL. 
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(2) It vas shown in [13] that a(X) is an AFL if X is an AFL. 

Corollary 2. If X is a full AFL, then a(X) - a(X) ■ i(X) = ^(X) and CT(X) is 

a full AFL. 

Proof. By Remark *» following the definition of substitution and by Corollary 3 

of Hieorem h.2f  d (X) = a (X) and a (X) is a full AFL for each rfitl. ThuB 

cr(X) = U an(X) ■ U $(£)  = a(X). Since each att) = ry.Jl)  for each rfi>l, 
nzl n   nil n n     n x 

a(X) is a full AFL. Clearly CT(X) C ^(X). Since a(X) is closed under 

substitution /(X) C ^(X). Hence CT(X) = i(X). Similarly a(X) = ^(X). 

Remark.  It was shown in [13 ] that ^(X) is a full AFL and CT(X) = i(X), if Z 

is a full AFL. 

Corollary 3« If X is an e-free AFL, then CT(X) = ^(X). If X is an AFL con- 

talninc (e), then 

^(x) - d w(x) = i(x) = iw(x) 

and a(X) is a full AFL. 

Proof. Let £ be an AFL. If X is e-free, then cr (X) = a (X) for each n, so —-—— n     n ' 

that CT(X) - a(X). By Corollary 1, CT(X) = 3(X). 

Suppose X contains [e). Clearly 5(X) = ^ ^(X) = i(X) c ^W(X). By 

Corollary 2, A ß(X) = i«(X)= ifl(X) and $ Ö(X) is a full AFL. Ihus 

£(X) = 5 Ä(X) = )(X) = iii(X) 

and § «(X) is a full AFL. It thus suffices to show that a  W(X) C ^(X). Now 

«(X) = «(X) a  X 

- X j X,   since X contains U) (by Remark 5 following the definition 
of substitution). 
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Let £. = X for each isl. Then for each nil, 

HlJ  a ... a M(Xn+1) C (X^ X^ ^ ... S (*„, 1 S W 

Hence a Ö(X) S CT(X). 

Remark.    It vas shown In [X3] that CT(X)= i(X) If X  is an e-free AFL. 

Exajnples.  (l)    Counters.    In [15] the notion of a 1-counter acceptor is 

generalized to that of a pda whose storage configurations are limited to the 

bounded regular sets Z   A-  ... A .    This device is easily seen to be equivalent 

to a nested acceptor with n counters.    Given n^O,  the family of languages 

defined by X(ü,A ... A4  ) ).  each 4. a l-counter AFA.  is denoted by 7 

and X((A4  )  ) by 7^      [15].    It is shown that 9       is properly contained in 

7  ,.      for each nfeO.    By Theorem U.2, 7   ,     ,   = y     a 7      =7     a 7        for 
n'-ljju ' '    n+;n,a)       n,u)     m,uj      n,d)      m,üü 

all n,  nftl.    By Theorera U.3, 7m      = iC?.     ). 

(2)    Linear context-free languages.    A family that has recently been 
A 

studied from three different viewpoints is X = K^o),  where Ü    is the family 

of linear context-free languages.    Note that U, is not an AFL since it is not 

closed under concatenation.    X ia called the "standard matching choice 

languaces" [21J,  the "quasi-rational languages" [20],  and the "derivation- 

bounded languages" [12].    Yntema and Nivat, independently, proved that X is 

properly contained in the context-free languages.    Theorem h.'i allows us to 

give a fairly simple acceptor realization for X, 

Let 7        - ^({wcw^w in {a,b) )).   7        is the smallest full AFL 
' 1) ■ X 'J)pJL 

^ 
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A 

contalnlnß M, [2, If), 20]. Thus X ■ i(y  ). Let K be an infinite denumerable 

cet. Let § be a new symbol and T  an infinite set containing 5. Let 

I - (MS))*. Let (0,*), with Q = (K,E,r,I,f,g), be the (single-tape) AFA 

\Aiere f and g are defined as follows (for all w in (T-UD , y in (r-{§)) , and 

Y,z  in M?)): 

(1) .'(e) = U) and ß(wZ) = g(§wZ) = Z. 

(2) f(wZ^ - wy, f(G,w) ■ w, f(§wZ,Y) = §wY, and f(§Z,€) = f(Z,€) = e. 

(3) f(wZ,e) = f(5wZ,e) = §w for Ve. 

Clearly (Q,JO) is a one-tvim bounded pda AFA, that is, each D in JO can make at 

nost one tum (i.e., the length of the storage configuration changes at most 

once fron increasing to decreasing) before returning to the storage configura- 

tion e [10, li]. It is shown in [15J that $    ■,  = X(i>). It can also be shown, 

although not done here, that 9    .  - X1^«). Let X = ^ . and X  = X ^ X, for 
'     01,1   v '      1  UJ,1    n+1  n  1 

each nsrl. (Each X is the family of quasi-rational languages of order n [20].) 

By Theoren h.3,  X = X((Ail)N) = U X^ = j(X(«)) - »(X*^)) = Xt((AJ0)
N). By 

n n 

Theorem h.2, each X    is a full AFL.    A result of Greibach [17] asserts that 

if X-  is not closed under substitution,  then each X    is properly contained in 

Xn+1 and i(X1) = ^(üf) = X is properly contained in the family of context-free 

languages. 

(3)    One-way stack languages.    Let (ng,jOg) be the one-vay stack AFA and 

Xg = X()ös) [6,  5],    Ihus X    is the one-way stack languages.    It was shown [15] 

that X    is not closed tinder substitution.    Hence X ^ XJj X = Z{{AJ\ i  )  ) and 

t(As) /X((A*r/). 
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Ihe nested stack acceptors (nsa) of [1] are far more general devices 

than the acceptors In (^fiq) . Members of (A* ) are essentially nsa vhlch are 

(a) nested (as defined In Section ^—there Is at most one nest of 

stacks at any time. 

(b) finitely nested—for each D there is an n such that no more than n 

stacks ere  active at any time. 

Both (a) and (b) restrict the power of nsa. Specifically, It Is shown In [17] 

that the nsa languages properly Include a(X ). 
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APPErroix 

We consider here the proof of Lerana 4.3. In the process ve shall need 

some notation and ideas pertinent only to this appendix. In addition, ve 

shall need two preliminary lemmas. 

We henceforth assume that JB, and 4 are given multitape AFA and that 

Let D = (K^ZL^q.F,^) be an acceptor in 4, and let 

u = (OL, ..., OL. J3., ..., 3^), witli k, tel, each a. in Q, and each ß. in 0^. 

Let Gp - {(v^ ..., Yk)/(Y1, •.., Yk* Y^, ..-, Yp in GD for soroe 

v' ..., vp« Por each G, 0 ^ G = G', write 

_/     _/ 

(q,a,w, (y^ ..., yk, y^, ..., yp)^-(q',w, (y^ ..., yk, y^ ..., y£) 

if there exist Y-j>   •••>  Yv»  Y{»   •••>  v£» ^U*   •••*  VL. VL,   ..., u'J  such that 

(1) (q',^*   •••* u^, u^,  ..., up) is inSCq^a^Y^   >**fYkfY{#***»Vx))j 

(2) 7J = fß (yj' UP f0r eaCh J'  •- ^ J ^ £; 

(3) (Y^  ...» Yk) is in G; 

(4) u. is in ilr    (Y.) and Y^ is in ^ (y.) for each i,  and Y' is in 

gp (yp for each J; 
J 

and     (5)    y. ^ e or y' jf^ e for some j . 
Jo Jo 

For each i^O let f—   be the relation on configurations defined by induction 
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as follows:    C f^-  C    for each C and C hr   C if there exists C" such that 

C f^-C" and c"hrC/.    Let |^-  be the transitive, reflexive extension of [»•• 

lÄt }—   be the relation defined by 

(q,aw, (y^  ..., yk, e,   ..., e)) (y(q'^^y^,  ..., yk,€,  ...,  c)) 

If 

(q^aw,  (y^  ..., yk,€,  ...,)) |—(q^w,  (y^,  ..., yk,€,  ..., e)). 

Let l-y-   be the reflexive transitive closure of \-j .    Intuitively,  (-— 

1* represents transitions In the fi.-part of D and hfln the « -part of D,    Since 

D 1B nested. If cf— c', then either Cf—c' or c|^t c' but not both.    Note that 

transitions (p^,^,  ..., yk,  €,   ,..,  e))|—(^',€,(7^   ..., yk, e,   ..., e)) 

occur as '— and not    as kr . 1 / 'G 

D Is said to be in factored form (with factor function h) if h is a 

function from K. into ■öl = {G/G C G^) such that 

(1) if (^w^e, ..., e))P (q^e^y^ ..,, yk, y^, ..., yp) then 

Mq) = KY^ •.., Yk)/Yi in ^ (y1) for each l). 

(2) if raai and (p^^y^ ..., y^y[,  •.., yp)^(q^c^y^ ...,yk,y^...,yj)), 

then h(p) ■ h(q) and 

i'Pfviyy -•-, y^yi» •••> yJ!))lGnh(p)^cl>e^yif ,,•, yk,yi' •••* yi^* 

The following two facts hold whenever D is in factored form with factor 

functicn h: 

(1) If (q0,w,(e, ..., e))f- (q^e^y^ ..., yk,y^ •••» V^)  and there 
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exists j    such that y   f e,  then h(q) ^ 0.    (For there exists a configuration 
0 Jo 

C and mil such that 

(q^Me, ..., e))|— c A (^£,(7^ ...» y^y^f •••» yp)- 

Hence C fjÄ^) (^«»(^  •••* yk»  y(*   •••* Yp)»    By definition of fffTg^ 

G^h(q)/0.) 

(2)    If C.   f^- Ci+1 for 1 s i < m,  \jhere each 

Ci = (Pi»wi»^yl'   **•' Vyll'   '*•'  yi^'  ^^ ^ ^ h^pl^ = h(Pi^   1 s i ^ m, 

ri^ci CJ frr N C. .. for each l<m. In particular. C, l-rf \ C . 
1 'MP^) 1+1 r      ' 1 ,h(p1) ra 

D is said to be in restricted factored form if it is in factored farm 

and if v j^ G ■whenever nisi and there exists a G such that 

To prove Lemma ^.3, ve shall show that Given D in ü , (a) there exists 

an equivaleiit device in jfi in restricted factored form, and (b) if D is in 

restricted factored form (and is qua si-realtime), then L(D) is in ^(JO-)^ X(4 ) 

N /    N 
Lenma A. Given D in JO«» there exists D in 4_ such that 

(a) D' is in factored form, 

(I,) L(D) = KD'-), 

and  (c) D' is quasi-realtime if D is qua si-realtime. 

m From the definition of hp  nfe2. 
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Proof.    Let K^ = K^ ^ x (1,2).    Let D* = (^,2^,6',(^,0,1),? x{0)x{l),  u), 

vihere 6 ' Is defined as follows (for arbitrary p in K_, a in ZLUU), and G In/tH: 

(1) ((p,0,l)» (KOpYj), ..., l(\»Yk)« l(ßre), ..., Kß^e)) is in 

8'((p^,2),e,(Y1, ..., Yk*e, ...,€)) for all 0^0 and (y^ ..., Yk) in G. 

(2) ((P^UCCY^..., Yk)), 1) dCo^Vj)« ..., iC^Yj^), iCP^t)« ...» 

l(ß£,e))) is in 8'((P,G,1),€,(Y1, ..., Yk,e, ..., €)) for each (y^ ..., Yk) 

in Gp-G. 

(3) If (<!,(«]*   •••* VV  •,,, UA^ ls lll6(P'a»(v1'  ••*» Yk*€,...,e)) 

and u'    is not in i      (c) for some J , then ((qjG,2),  (u-,  ..., \»^*   •••* ^f)) 
0 Jo 

is in 8' ((p,G,l), a^Y^  ..., Yk, €,   ..., e)) for all (Y^  ..., Yk) In G. 

(k)    If (q,^,   ..., \fv[,  •••, uj)) is in «(p^^Y^-^Y^Y^-^Yp), 

(Y^  ..., Yk#Yp  •••, Yp in GD,  and fop some J^ either u'    is not in ^    (e) 
0 ''o 

or YJ / e* then ((^0f8)9(Ujj  ..., \t\t  •••# up) is la <#((f^(l#2)f% 

(Y^  ..., Yk*Y^  ...* Yp) for all G containing (Y^   ..., Yk). 

(5)    If (^(v^,  ..., \fv[>  ..., up) is in6(p,a,(Y1,  ..., Yk,€, ...#e)), 

(Y,* ..., Yk>e» •••> e) in GD and u' is in i|r (e) for all J, l « j s i, then 
J 

((q^l)» i\f   -•'* \>\>   •••# up) i8 ^ ^'((P^*1)* a, 

iyj»  •••# Yk*€, ...* c)). 

Obviously D' is in fi^. Let h be the function defined by h((p,G,i)) = G 

for all p in K , G inJb, and i in (l,2). By inspection (since G'= G'/), D* 

is in factored form with factor function h, i.e., D satisfies (a). 
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Consider (b). D enters a state (p,G,2) If and only if D has a kr 

transltlon. Type 3 and type k  rules imitate k-transitions, and type 5 rules 

Imitate r" transitions in D. Since D is nested, every transition has an 

associated hr or |— transition. When the 4 -tapes are €, a type 1 rule can 

be used to go from a state (p,G,2), >*iere h((p,G,l))ss 0^0, to a state (p,0,l) 

and then enter the * -part of the acceptor. T^pe 2 rules represent the guess 

that D executes a f^ transition. Once h((p,G,l))^, D' ultlaately blocks or 

else executes (by a type 3 rule) ut least one kr transition. Thus L(D) - ^(D'). 

Consider (c). If #(G_) ■ n , then D* has at most n+2 consecutive ennoves 

for each e-move of D. Ihus D is quasi-realtime if D is qua si-realtime. 

N *   N 
Lemma B.  If D in 4- is in factored form, then there exicts D in A such that 

(a) D" is in restricted factored form, 

(b) L(D ) = L(D), 

and (c)    D" is quasi-realtime if D is quasi-realtlme. 

Proof»    Let D be in factored form with factor function h.    Since 

(P»<>(^<   •••» \>tt  •••*  e))  ^"(^^(xp  ..., A'k,c,   ...,  e)), nfel, iraplios 

0 ^ h(p)  = h(q) and (p,C#(3^,   ...,  x^,(i,   ...,  e))  ^(q,€, (x^ .. .^,6, ...,€)), 

we need only consider such transitions with G = h(p) ■ h(q).     Let S be the set 

of all (p, q) in K * K , vhere p^q and 0 ^ h(p) = h(q),  such that there exist 

Yl'   •••, Yk z^stying 

M 

(p»€,(Yr  ..., YkJ€,   ,..,  €)) |^ (q,e,(Y1f   ...» Yk»e»   •••,  G)). 

Let S". ■ lyjClCjX (J^UCe})).    Let D"  = (1^,^,6",qo,F",u), where F" = FU(Fx{6}) 

and 6" is defined as follows: 

(1)    (q,(u1,   ..., u^u^,   ...,  up) is in 6" (p, a, (Y^   ..., Yk,e,   ...,  e)) 
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if (q,^, ..., ^u^, .,., up) la in SCP^^Y^ ..., Yk*€; •.•> €>), with 

n'.  in tA (e) far all J. 

[By (l), the f—- transitions of D appear in D*. ] 

(2) («bCl^Yi), ..., i^Vj^), 1(3^0, ..., Uß^O)) is in 

S'd^C^CY.i ..., Vk,€, ..., c)) for all (p,q) in S and all (y^ ..., Yk) In h(p). 

[Since p/q, the cnnove in (2) replaces at least two e-raovea in D. For if 

(P^e^y^ •.., yk»e» =••» €))f^ (q,€t(y1, ..., yk,€, .,., «)) for p^ then 

by definition of hr at leaat two moves are needed. ] 

(3) If (q,^, ...» \>\>  •••> nj)) is infiCPja,^, ..., Yj^e, ..., €)), 

wi^YjL» •.., Yk) in h(p) ■ h(q) and u' not in iu (e) for some Jo, 
0       Jo 

then 

(o. ((q,«)!^ •••> \>\'  •••$  ul)) is *» •'foMVj, ..., Yk>e,...,€)) 

if a is in ZL. 

(ß) ((q^h)^^, ..., ^u^, ..., up) is ino'Cp,^, ..., Yki€,...,e)) 

for each b in 2^ if a = €. 

[By (3), a sequence of [■£- moves in D"  starts with a non-€ input,  namely, 

either the input to D (3a),  or a guess as to the eventual non-€ input symbol 

to be read by D (3ß). ] 

(4) If (q,(u1,   ...,  u^u^,  .,., up) is in ö^a,^,...^^...^')), 

with Yj / £ for some Jo and (Y^  ..., Yk) in h(p) ■ h(q), then 

(a)    ((q^e)^^,  ...^u^,   ..., up) is in 6#((p,€),a,(Y1,...,Yk, 

Yi*  •-, Yp). 

I    ■ 
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(3)    ((q^e),^,  ..., \»v[*   •••« up) ^ In 6'((p,a),€,(Y1,  ..., Yk> 

vl'  ••,' yi^ ^ a is in ^ 

(Y)    ((q,^)^^,  ..., i^,u^,   ..., up) is In 6'((p,b),€(Y1,  ..., Yk, 

Y{#  •••* Yp) for all b in Z^ if a=e. 

[By CO, D" can eater no state (q,€) until the guess as to the non-e input of 

D hac been verified.    If D" enters a configuration ((q*a),v,(y.,...,y. ,€, ...,e)) 

with aj^e,  then D" blocks since it has traced out a computation on 6-input 

handled by a type 2 rule.    Otherwise,a bj- transition is unchanged. ] 

(5)    foClfc^Y]),  ..., iCa^Yj^Cß^e),  ..., l(3n,e))) is in 

5/'((p,€),e,(Y1»  ..., Yk,€,   ...,  €)) for each p in 1^ and (Y^   ..., Yk) in MP). 

[ After tracing a ^g con^mtation on non-€ input, D* returns to a I^-state and 

initates eitJier |—•  or f^-   transitions. ] 

Since only type 5 rules add €-rules not slraulaticg e-rules in D and 

these cannot be applied twice in a row, D' is quasi-realtime if D is. 

The only transitions of D not represented in D" are 

(?,€,("/!>   •••>  yk>e»   •••>  €))li^p) (^^(y^  •••* yk#e*   •••» e)) and these are 

covered by (2).    Ihe only new transitions are (2) and (5).    Thus II(D)= L(D"), 

Let h be the function on K^ defined by h(p) ■ h((p,a)) = h(p) for each 

p in K, and a in ilLlCe).    Ilien D" is in factored form with factor function h. 

Now hr  computations in D"  start with a type 3 rule.    Since all type 3 rules 

have non-e input, D" is in restricted factored form. 

We are now ready for Leraina ^,3. 
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Lennna k,3,    !*(#") B «*(«")» X*^^) 

and X(^) = X(«J) a X(^). 

N 
Proof. Let D = (K-jZL^ajF,!?) be In JO , Suppose each a In u is In 3.. 

N 
3ien D Is in il- and L(D) = T(II(D)), ■where T is the e-ftree substitution defined 

by T(a) ■ (a) for each a in E . Since the AFL X (Ä ) contains each e-free 

regular set and thus each (a), each T(a) is in X (4 ), \)hence the result. 

Similarly, if all a in u are in Q^ then D is in * and Ii(D) ■ T((a)), silence 

T(a) ■ IJ(D) and the regular set {a} is in X {A  ).    Thus assume that 

u = (0^, ..., Oj^, ..., ßx), with k, tel,  (o^, ..., 0^) c a^^ and (ß^ ..., ß^^^. 

By Lemmas A and B we may assume that D is in restricted factored form with 

factor function h.    We shall say that G describes (y,,  ..., y. ) if G c 

{(Y1,...,Yk)/Yi in e^ (y^) for each i).    We shall say (p,^,   ...,  yk)) is 

accessible if (^w^c,  ..., e))p (p^^y^   ..., yk,y^   ...,  yp) for some 

w and some (y.,   ,..,  y^).   Without loss of generality we may assume that if p 

is in ICy  then there exists (y^   ...,  y. )  such that (p^y,,   ...,  y.)) is 

accessible. 

Since D is in factored form,  if 

(p^Cy.^ ...* y-^y^f •••* yp)^ fo«*^ •••» V7!' ••,' yI^ for 

some mal and if (p,(y., ..., y.)) is accessible, then the following hold: 

(1) h(p) = h(q) and h(p) describes (y^ ..., yk). 

(2) (p^^y^ ..., y^y^, ..., yp)(^pj((b€,(y1,.. .,yk,y*, . ..,yp). 
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(3)    If h(p) describes (y-,  ,,., y,.),  then 

For each (p,q) in K-X K. with h(p) ■ h(o)/0*  let ^»^ be a new symbol 

rrnd let 

^q " fw/(p,w,(y1,  ..., yk,€, ..., €))|^(q,e,(y1, ..., yk,e,   ..., €)) 

far sane vatl and some y ,   ...,  y J. 

(The condition nctl Is aeeded for the case p=q since otherwise L       might 

trivially contain €.)    Since D Is In restricted factored form, L       Is 

obviously e-free.    Let K     = (s In K,/h(s) ■ h(p)) and let D       = 
P* 4 1 P* Q. 

(K     ,5      .P^Cci)»  (ß,j  •••. 0i))i vhere 6        Is defined as follows (for all 

appropriate s^s^a,  etc):    If (s^C^  •••* *#*}$  •••» ux)) iB *■ 

*i»i»**iVi$ •••« VYi*  ••.* YjJ))/ vlth hCs^ = h(s2) ■ h(p) and there exist 

J    such that either u' Is not In iL    (yj  ) or Y! /c; then (srt,(u_/,...,uj))l8 In 

6p,q(8l,a'(Yl'  '••' Vj»- 
Jo     0 

SiQjpose h(p) ■ h(q)^ji    Obviously D        Is quasl-realtliae If D Is quasl- 
p*q 

realtime.    If 

(VfVfiVv  '••>  y^e,   ..., «))|^)  (s^e^y^   ..., yk,y^  ..., yp) 

and      (s^a^y^   ...,  yk,y{#  ..., yp)!^) (•^«»(X]«   •••# V7!'   •,,' "l^* 

then h(p) = hts.) ■ h(8p) and there exists J    such that either y'. ^€   or 

y"  ^ € ,   so that 
Jo 

p* q 
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Hence L     c L(D     ).   On the other hand,  suppose (s^a,(y/,   ...,  yp) 

ID    i^^fiy^t  •••# yp)»    ^«n h(p) ■ hia^) = h(8 ), there exists 

(YI*   •••#  yk) such that h(p) describes (y.,  ,,,, y. )  (by (l)),and there exists 

J    such that either y' ^ e or y' / c.    Thus 
Jo Jo 

(a^a^y^ ..., y^y^, ..., yp)^) (•^«»(xj« •••# y^yj.* •••# yp)* 

Hence L(D      ) C L     ,  so that IJ(D      ) = L     . 
p*q       p*q' p^q'      p,q 

Let Lp be the set of all <p,<f>.    Let T be the  substitution on ZLU Z« 

defined by T(a) ■ (a) for each a in L.  and T(<P,(^) ■ L       for each <p,q> 

in E..    Ihen T is an e-free substitution by £(AJ), and if D is qua si-realtime 

then T is an €-free aubstitution by £ (A ). 

Now let D «= (XoSJJ Zg, S^q^F,^,   ..., 01^)),  \4iere T is defined as 

follows: 

V*)    (q*^,  ..., u^)) is in^pja^Y^  ..., Yk)) if (^(^  •••, \, 

u^,   ...,up)i8 in 8(9|t9(y1«   ...» Yk*€,   ••., e)) and uj is in f    (c) for all j. 
v 

(5)    ((3,(1(0^^^,  ..., 1(0^,7^)) is inr(p,<p,qf>,(Yr  ..., Yk)) for 

all p,q such that h(p) = h(q)^0 and (Y,,   '•>, Yk)is in h(p). 

If (^•»(y1i  •••* yk))t (q*e,(^/ ..., yk)),  with a in ZjUCe), then 

T(a) = {a} and foa,^,  ...,  yk,e,   ...,  €))f^-(q,€,(y1,  ...,  yk,€,  ..., e)). 

Thus (q,(y1,  ..., yk)) is accessible if (p,^,..., yk))i3.    If 
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fahifj»   •••» yk))t (^^(y^  ...,   Yy)), with b In Zg, then   b - <p,q>, T(b)' 

L     . and (y.,  .,., y.) ■ (y ,  ...,  y. ).    In addition, if v Is In L       and 
p, q L K 1 K P, Q. 

h(p) describes (y^   •••« y.), then 

(P^w^y^  ..., yk,€,  ..., c))  |^-h(p) (^^^(y^   ..,,  yk,€,   ...,  c)). 

(For if a transition in D holds for sonn (y ,   ..,,  y.) described by h(p),  it 

holds for all such (y-,  ..., yr.)»)    From this it readily follows that 

L(D) = T(L(D)).    Clearly D is in 4.  and D is quasi-realtlme if D is.    Hence 

Ii(D) is in £0^) er X(«2), and if D is quasl-realtlme then L(D) la in 
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